当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-objective cross-sectional shape and size optimization of S-rail using hybrid multi-criteria decision-making method
Structural and Multidisciplinary Optimization ( IF 3.9 ) Pub Date : 2020-07-02 , DOI: 10.1007/s00158-020-02651-y
Chong Xie , Dengfeng Wang

This study proposes a multi-objective lightweight and crashworthiness optimization design of complex cross-sectional shape and size of S-rail employing a hybrid multi-criteria decision-making (HMCDM) method. Several S-rails with special cross-sectional shapes of the reinforcement plate are established and compared. Response surface models with different orders are established considering the complex cross-sectional shapes and sizes. The objective function chosen for the two objectives is the specific energy absorption (SEA) and the peak force (PF). Meanwhile, the metrics for the three-objective are the PF, the total mass (M), and the energy absorption (EA). Two-objective Pareto fronts are obtained by the three-objective optimization confronting. Different multi-criteria decision-making methods are used to find the trade-off optimum points from the Pareto fronts. Results indicate that the proposed HMCDM method, including the technique for order preferences by similarity to ideal solution, gray relational analysis, and entropy weight, demonstrates a good trade-off frontier solution. In the case of a slight increase in M, the EA and SEA performances of the optimal model are greatly improved compared with the S-rail without a stiffener. Compared with the initial optimization model, the M of the optimal model is reduced by 25.62%, and the performance is improved. Therefore, the design of the cross-sectional shape and size of the S-rail and hybrid method can improve the crashworthiness.



中文翻译:

基于混合多准则决策方法的S形钢轨多目标断面形状和尺寸优化

这项研究提出了一种采用混合多准则决策方法(HMCDM)的S型轨道复杂横截面形状和尺寸的多目标轻量化和耐撞性优化设计。建立并比较了几种具有特殊横截面形状的加强板的S形导轨。考虑到复杂的横截面形状和尺寸,建立了具有不同阶次的响应面模型。为两个目标选择的目标函数是比能量吸收(SEA)和峰值力(PF)。同时,三个目标的指标是PF,总质量(M)和能量吸收(EA)。通过三目标优化对抗获得二目标帕累托前沿。不同的多准则决策方法用于从帕累托前沿找到最佳折衷点。结果表明,所提出的HMCDM方法(包括通过与理想解的相似性进行阶次偏好的技术,灰色关联分析和熵权)证明了一种良好的折衷边界解决方案。在M稍微增加的情况下,与没有加强筋的S形导轨相比,最优模型的EA和SEA性能得到了极大的改善。与初始优化模型相比,优化模型的M降低了25.62%,性能得到了提高。因此,S形钢的横截面形状和尺寸的设计以及混合方法可以提高耐撞性。包括与理想解决方案相似的订单偏好技术,灰色关联分析和熵权,都证明了一种不错的折衷边界解决方案。在M稍微增加的情况下,与不带加强筋的S型轨道相比,最优模型的EA和SEA性能得到了极大的改善。与初始优化模型相比,优化模型的M降低了25.62%,性能得到了提高。因此,S形钢的横截面形状和尺寸的设计以及混合方法可以提高耐撞性。包括与理想解决方案相似的订单偏好技术,灰色关联分析和熵权,都证明了一种不错的折衷边界解决方案。在M稍微增加的情况下,与没有加强筋的S形导轨相比,最优模型的EA和SEA性能得到了极大的改善。与初始优化模型相比,优化模型的M降低了25.62%,性能得到了提高。因此,S形钢的横截面形状和尺寸的设计以及混合方法可以提高耐撞性。与不带加强筋的S型轨道相比,最佳模型的EA和SEA性能得到了极大的提高。与初始优化模型相比,优化模型的M降低了25.62%,性能得到了提高。因此,S形钢的横截面形状和尺寸的设计以及混合方法可以提高耐撞性。与不带加强筋的S型轨道相比,最佳模型的EA和SEA性能得到了极大的提高。与初始优化模型相比,优化模型的M降低了25.62%,性能得到了提高。因此,S形钢的横截面形状和尺寸的设计以及混合方法可以提高耐撞性。

更新日期:2020-07-02
down
wechat
bug