当前位置: X-MOL 学术arXiv.cs.IT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Beamspace Channel Estimation in Terahertz Communications: A Model-Driven Unsupervised Learning Approach
arXiv - CS - Information Theory Pub Date : 2020-06-30 , DOI: arxiv-2006.16628
Hengtao He, Rui Wang, Shi Jin, Chao-Kai Wen, and Geoffrey Ye Li

Terahertz (THz)-band communications have been one of the promising technologies for future wireless networks that integrate a wide range of data-demanding applications. To compensate for the large channel attenuation in THz band and avoid high hardware cost, a lens-based beamspace massive multiple-input multiple-output (MIMO) system is considered. However, the beam squint effect appeared in wideband THz systems, making channel estimation very challenging, especially when the receiver is equipped with a limited number of radio-frequency (RF) chains. Furthermore, the real channel data cannot be obtained before the THz system is used in a new environment, which makes it impossible to train a deep learning (DL)-based channel estimator using real data set beforehand. To solve the problem, we propose a model-driven unsupervised learning network, named learned denoising-based generalized expectation consistent (LDGEC) signal recovery network. By utilizing the Steins unbiased risk estimator loss, the LDGEC network can be trained only with limited measurements corresponding to the pilot symbols, instead of the real channel data. Even if designed for unsupervised learning, the LDGEC network can be supervisingly trained with the real channel via the denoiser-by-denoiser way. The numerical results demonstrate that the LDGEC-based channel estimator significantly outperforms state-of-the-art compressive sensing-based algorithms when the receiver is equipped with a small number of RF chains and low-resolution ADCs.

中文翻译:

太赫兹通信中的波束空间信道估计:一种模型驱动的无监督学习方法

太赫兹 (THz) 频带通信已成为未来无线网络的一项有前途的技术,这些网络集成了广泛的数据需求应用程序。为了补偿太赫兹频段的大信道衰减并避免高昂的硬件成本,考虑了基于透镜的波束空间大规模多输入多输出(MIMO)系统。然而,光束斜视效应出现在宽带太赫兹系统中,使得信道估计非常具有挑战性,尤其是当接收器配备有限数量的射频 (RF) 链时。此外,在太赫兹系统在新环境中使用之前无法获得真实的信道数据,这使得不可能预先使用真实数据集训练基于深度学习(DL)的信道估计器。为了解决这个问题,我们提出了一个模型驱动的无监督学习网络,命名为基于学习去噪的广义期望一致(LDGEC)信号恢复网络。通过利用 Steins 无偏风险估计器损失,LDGEC 网络可以仅使用与导频符号相对应的有限测量值进行训练,而不是使用真实的信道数据。即使是为无监督学习设计的,LDGEC 网络也可以通过逐个降噪器的方式使用真实通道进行监督训练。数值结果表明,当接收器配备少量 RF 链和低分辨率 ADC 时,基于 LDGEC 的信道估计器的性能明显优于最先进的基于压缩感知的算法。LDGEC 网络只能使用与导频符号相对应的有限测量来训练,而不是使用真实的信道数据。即使是为无监督学习设计的,LDGEC 网络也可以通过逐个降噪器的方式使用真实通道进行监督训练。数值结果表明,当接收器配备少量 RF 链和低分辨率 ADC 时,基于 LDGEC 的信道估计器的性能明显优于最先进的基于压缩感知的算法。LDGEC 网络只能使用与导频符号相对应的有限测量来训练,而不是使用真实的信道数据。即使是为无监督学习设计的,LDGEC 网络也可以通过逐个降噪器的方式使用真实通道进行监督训练。数值结果表明,当接收器配备少量 RF 链和低分辨率 ADC 时,基于 LDGEC 的信道估计器的性能明显优于最先进的基于压缩感知的算法。
更新日期:2020-07-02
down
wechat
bug