当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Algorithms and complexity for geodetic sets on planar and chordal graphs
arXiv - CS - Discrete Mathematics Pub Date : 2020-06-30 , DOI: arxiv-2006.16511
Dibyayan Chakraborty, Sandip Das, Florent Foucaud, Harmender Gahlawat, Dimitri Lajou, Bodhayan Roy

We study the complexity of finding the \emph{geodetic number} on subclasses of planar graphs and chordal graphs. A set $S$ of vertices of a graph $G$ is a \emph{geodetic set} if every vertex of $G$ lies in a shortest path between some pair of vertices of $S$. The \textsc{Minimum Geodetic Set (MGS)} problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study \textsc{MGS} on restricted classes of planar graphs: we design a linear-time algorithm for \textsc{MGS} on solid grids, improving on a $3$-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that it remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that \textsc{MGS} is fixed parameter tractable for inputs of this class when parameterized by its \emph{tree-width} (which equals its clique number). This implies a polynomial-time algorithm for $k$-trees, for fixed $k$. Then, we show that \textsc{MGS} is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure.

中文翻译:

平面和弦图上大地测量集的算法和复杂性

我们研究了在平面图和弦图的子类上找到 \emph {geodetic number} 的复杂性。如果$G$ 的每个顶点都位于$S$ 的某对顶点之间的最短路径中,则图$G$ 的顶点集合$S$ 是\emph{geodetic set}。\textsc{Minimum Geodetic Set (MGS)} 问题是找到一个给定图的最小基数的大地测量集。已知该问题在二部图、弦图、平面图和亚三次图上仍然是 NP-hard 问题。我们首先在平面图的受限类别上研究 \textsc{MGS}:我们为实体网格上的 \textsc{MGS} 设计了一个线性时间算法,改进了 Chakraborty 等人的 $3$-近似算法。(CALDAM, 2020) 并表明即使对于任意周长的亚三次局部网格,它仍然是 NP 难的。这统一了文献中的一些结果。然后,我们将注意力转向和弦图,表明 \textsc{MGS} 当由其 \emph{tree-width}(等于其集团编号)参数化时,对于此类的输入是可处理的固定参数。这意味着 $k$-trees 的多项式时间算法,对于固定的 $k$。然后,我们证明 \textsc{MGS} 在区间图上是 NP-hard 的,从而回答了 Ekim 等人的一个问题。(拉丁文,2012 年)。由于区间图非常受约束,为了证明后一个结果,我们设计了一种相当复杂的归约技术来解决其固有的线性结构。我们证明 \textsc{MGS} 在区间图上是 NP 难的,从而回答了 Ekim 等人的问题。(拉丁文,2012 年)。由于区间图非常受约束,为了证明后一个结果,我们设计了一种相当复杂的归约技术来解决其固有的线性结构。我们证明 \textsc{MGS} 在区间图上是 NP 难的,从而回答了 Ekim 等人的问题。(拉丁文,2012 年)。由于区间图非常受约束,为了证明后一个结果,我们设计了一种相当复杂的归约技术来解决其固有的线性结构。
更新日期:2020-07-01
down
wechat
bug