当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanospace-Confinement Synthesis: Designing High-Energy Anode Materials toward Ultrastable Lithium-Ion Batteries.
Small ( IF 13.3 ) Pub Date : 2020-06-30 , DOI: 10.1002/smll.202002351
Hao Jiang 1 , Haoxuan Zhang 1 , Ling Chen 1 , Yanjie Hu 1 , Chunzhong Li 1
Affiliation  

Exploiting high‐capacity and durable electrode materials is pivotal to developing lithium‐ion batteries (LIBs) and their applications. Multiscaled nanomaterials have been demonstrated to efficiently couple the advantages of each component on different scales in energy storage fields. However, the precise control of the microstructure remains a great challenge for maximizing their contributions. Nanospace‐confined synthesis provides a proactive strategy to build novel multiscaled nanomaterials with controllable internal void space for circumventing the intrinsic volume effects in the charge/discharge process. Herein, the rational design and synthesis of multiscaled high‐capacity anode materials are mainly summarized according to their electrochemical mechanisms by choosing 1D channel, 2D interlayer, and 3D space as representative confinement reaction environments. The structure–performance relationships are clarified with the assistance of quantitative calculations, molecular simulations, and so forth. Finally, future potentials and challenges of such a synthesis tactic in designing high‐performance electrode materials for next‐generation secondary batteries are outlooked.

中文翻译:

纳米空间约束合成:针对超稳定锂离子电池设计高能阳极材料。

开发高容量和耐用的电极材料对于开发锂离子电池(LIB)及其应用至关重要。已经证明,多尺度纳米材料可以在能量存储领域中以不同规模有效地耦合每个组件的优点。然而,对微结构的精确控制仍然是最大程度地提高其贡献的巨大挑战。纳米空间限制的合成提供了一种主动的策略,可以构建具有可控内部空隙空间的新型多尺度纳米材料,从而规避充电/放电过程中的固有体积效应。在此,主要根据电化学机理,通过选择一维通道,二维夹层,和3D空间作为典型的限制反应环境。借助定量计算,分子模拟等,可以阐明结构与性能之间的关系。最后,展望了这种合成策略在设计用于下一代二次电池的高性能电极材料中的未来潜力和挑战。
更新日期:2020-08-14
down
wechat
bug