当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A surrogate model for computational homogenization of elastostatics at finite strain using high‐dimensional model representation‐based neural network
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2020-06-30 , DOI: 10.1002/nme.6493
Vien Minh Nguyen‐Thanh 1 , Lu Trong Khiem Nguyen 2 , Timon Rabczuk 3 , Xiaoying Zhuang 1, 4, 5
Affiliation  

We propose a surrogate model for two‐scale computational homogenization of elastostatics at finite strains. The macroscopic constitutive law is made numerically available via an explicit formulation of the associated macroenergy density. This energy density is constructed by using a neural network architecture that mimics a high‐dimensional model representation. The database for training this network is assembled through solving a set of microscopic boundary value problems with the prescribed macroscopic deformation gradients (input data) and subsequently retrieving the corresponding averaged energies (output data). Therefore, the two‐scale computational procedure for nonlinear elasticity can be broken down into two solvers for microscopic and macroscopic equilibrium equations that work separately in two stages, called the offline and online stages. The finite element method is employed to solve the equilibrium equation at the macroscale. As for microscopic problems, an FFT‐based collocation method is applied in tandem with the Newton‐Raphson iteration and the conjugate‐gradient method. Particularly, we solve the microscopic equilibrium equation in the Lippmann‐Schwinger form without resorting to the reference medium. In this manner, the fixed‐point iteration that might require quite strict numerical stability conditions in the nonlinear regime is avoided. In addition, we derive the projection operator used in the FFT‐based method for homogenization of elasticity at finite strain.

中文翻译:

使用基于高维模型表示的神经网络的弹性体在有限应变下计算均质化的替代模型

我们为弹性体在有限应变下的两尺度计算均质化提出了一个替代模型。宏观本构定律通过相关宏观能量密度的明确表述在数值上可获得。通过使用模仿高维模型表示的神经网络架构来构建此能量密度。通过解决一组具有规定的宏观变形梯度的微观边界值问题(输入数据),然后检索相应的平均能量(输出数据),来组装用于训练该网络的数据库。因此,非线性弹性的两尺度计算程序可以分解为两个微观和宏观平衡方程的求解器,它们在两个阶段分别工作,称为离线阶段和在线阶段。采用有限元方法在宏观尺度上求解平衡方程。对于微观问题,基于FFT的配置方法与牛顿-拉夫森迭代法和共轭梯度法一起应用。特别是,我们无需借助参考介质即可解决Lippmann-Schwinger形式的微观平衡方程。通过这种方式,避免了在非线性状态下可能需要非常严格的数值稳定性条件的定点迭代。此外,我们推导了基于FFT的方法中使用的投影算子,用于使有限应变下的弹性均匀化。基于FFT的配置方法与牛顿-拉夫森迭代法和共轭梯度法一起应用。特别是,我们无需借助参考介质即可解决Lippmann-Schwinger形式的微观平衡方程。通过这种方式,避免了在非线性状态下可能需要非常严格的数值稳定性条件的定点迭代。此外,我们推导了基于FFT的方法中使用的投影算子,用于使有限应变下的弹性均匀化。基于FFT的配置方法与牛顿-拉夫森迭代法和共轭梯度法一起应用。特别是,我们无需借助参考介质即可解决Lippmann-Schwinger形式的微观平衡方程。通过这种方式,避免了在非线性状态下可能需要非常严格的数值稳定性条件的定点迭代。此外,我们推导了基于FFT的方法中使用的投影算子,用于使有限应变下的弹性均匀化。避免了在非线性状态下可能需要非常严格的数值稳定性条件的定点迭代。此外,我们推导了基于FFT的方法中使用的投影算子,用于使有限应变下的弹性均匀化。避免了在非线性状态下可能需要非常严格的数值稳定性条件的定点迭代。此外,我们推导了基于FFT的方法中使用的投影算子,用于使有限应变下的弹性均匀化。
更新日期:2020-06-30
down
wechat
bug