当前位置: X-MOL 学术Thin-Walled Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crushing responses and energy absorption behaviors of multi-cell CFRP tubes
Thin-Walled Structures ( IF 6.4 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.tws.2020.106930
Qiang Liu , Jie Fu , Yitao Ma , Yanqin Zhang , Qing Li

Design of multi-cell sectional configuration has been considered an effective way to enhance the crashworthiness performance of metallic thin-walled structure. Nevertheless, it remains under-studied whether this approach can achieve similar effect for fiber reinforced composite structures. Therefore, this paper aims to study the crushing responses and energy absorption behaviors of multi-cell squared carbon fiber reinforced plastic (CFRP) tubes fabricated by using hot compression molding process. The effects of CFRP cell number, wall thickness and trigger mechanism on crashworthiness characteristics were investigated. The experimental results showed that under the same weight, the energy absorption of double-cell tube was lower than that of single-cell tube. This was due to the fact that there was insufficient deformation in the T-shaped region of double-cell CFRP tube. The inner fronds generated in the middle ribs caused part of tubal wall near T-shaped region to bend completely outwards rather than to crush progressively under axial compression, thus losing certain capacity of energy absorption. In addition, a double-shell finite element model was constructed to gain further insights into the crushing behavior of the double-cell CFRP tube. The numerical model effectively replicated the collapse mode; and good agreement was obtained between the experimental and numerical load-displacement curves. The study exhibits considerable potential of developing crashworthy multi-cell CFRP structures.



中文翻译:

多单元CFRP管的挤压响应和能量吸收行为

多单元截面构造的设计已被认为是增强金属薄壁结构的耐撞性能的有效方法。然而,对于纤维增强复合材料结构而言,这种方法是否可以达到类似的效果尚待研究。因此,本文旨在研究采用热压成型工艺制造的多格方形碳纤维增强塑料(CFRP)管的破碎响应和能量吸收行为。研究了碳纤维增强塑料单元数,壁厚和触发机制对耐撞性的影响。实验结果表明,在相同重量下,双电池管的能量吸收低于单电池管的能量吸收。这是由于在双室CFRP管的T形区域变形不足。在中间肋骨中产生的内部叶状体导致靠近T形区域的部分输卵管壁完全向外弯曲,而不是在轴向压缩下逐渐破碎,从而失去了一定的能量吸收能力。此外,构建了双壳有限元模型,以进一步了解双单元CFRP管的破碎行为。数值模型有效地复制了塌陷模式。实验和数值荷载-位移曲线之间取得了很好的一致性。这项研究显示出开发具有耐撞性的多单元CFRP结构的巨大潜力。在中间肋骨中产生的内部叶状体导致靠近T形区域的部分输卵管壁完全向外弯曲,而不是在轴向压缩下逐渐破碎,从而失去了一定的能量吸收能力。此外,构建了双壳有限元模型,以进一步了解双单元CFRP管的抗压性能。数值模型有效地复制了塌陷模式。实验和数值荷载-位移曲线之间取得了很好的一致性。这项研究显示出开发具有耐撞性的多单元CFRP结构的巨大潜力。在中间肋骨中产生的内部叶状体导致靠近T形区域的部分输卵管壁完全向外弯曲,而不是在轴向压缩下逐渐破碎,从而失去了一定的能量吸收能力。此外,构建了双壳有限元模型,以进一步了解双单元CFRP管的抗压性能。数值模型有效地复制了塌陷模式。实验和数值荷载-位移曲线之间取得了很好的一致性。这项研究显示出开发具有耐撞性的多单元CFRP结构的巨大潜力。构建了双壳有限元模型,以进一步了解双单元CFRP管的破碎行为。数值模型有效地复制了塌陷模式。实验和数值荷载-位移曲线之间取得了很好的一致性。该研究显示出开发具有耐撞性的多单元CFRP结构的巨大潜力。构建了双壳有限元模型,以进一步了解双单元CFRP管的破碎行为。数值模型有效地复制了塌陷模式。实验和数值荷载-位移曲线之间取得了很好的一致性。该研究显示出开发具有耐撞性的多单元CFRP结构的巨大潜力。

更新日期:2020-07-01
down
wechat
bug