当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combining pyrolysis–two-dimensional gas chromatography–time-of-flight mass spectrometry with hierarchical cluster analysis for rapid identification of pyrolytic interactions: Case study of co-pyrolysis of PVC and biomass components
Process Safety and Environmental Protection ( IF 7.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.psep.2020.06.036
Shogo Kumagai , Asami Matsukami , Fumie Kabashima , Masafumi Sakurai , Michiko Kanai , Tomohito Kameda , Yuko Saito , Toshiaki Yoshioka

Abstract Co-pyrolysis of plastic/lignocellulosic biomass mixtures produces an extremely complex assortment of pyrolyzates. In the present work, co-pyrolysis of PVC with cellulose or xylan or milled wood lignin was conducted by employing pyrolysis–two-dimensional gas chromatography–time-of-flight mass spectrometry (Py-GC × GC-TOFMS) with the aim of achieving high throughput and comprehensive analysis of the complex pyrolyzates. Then, hierarchical cluster analysis (HCA), which is an algorithm that groups similar objects into groups called clusters, was applied to accomplish rapid screening for compounds influenced by pyrolytic interactions. This combined approach improved compound separation and identifiability and allowed the subsequent easy identification of new compounds and compounds increased or decreased by pyrolytic interactions during co-pyrolysis. The change in distribution during co-pyrolysis clearly suggests the occurrence of HCl-catalyzed dehydration of anhydrosugars and conversion of methoxyphenols into phenolic compounds. Thus, this study reveals the effectiveness of the approach combining Py-GC × GC-TOFMS with HCA, which promises to contribute to the acceleration of research on pyrolytic interactions. The understanding of pyrolytic interactions gained thereby will be crucial for maximizing the yield and quality of desired chemicals and fuels from plastic/lignocellulosic biomass.

中文翻译:

将热解-二维气相色谱-飞行时间质谱与层次聚类分析相结合,快速识别热解相互作用:PVC 和生物质组分共热解的案例研究

摘要 塑料/木质纤维素生物质混合物的共热解产生了极其复杂的热解产物。在目前的工作中,通过使用热解-二维气相色谱-飞行时间质谱 (Py-GC × GC-TOFMS) 进行 PVC 与纤维素或木聚糖或磨碎的木质素的共热解,目的是实现复杂热解产物的高通量和综合分析。然后,层次聚类分析 (HCA) 是一种将相似对象分组到称为聚类的组的算法,用于快速筛选受热解相互作用影响的化合物。这种组合方法改进了化合物的分离和可识别性,并允许随后轻松识别新化合物以及在共热解过程中因热解相互作用而增加或减少的化合物。共热解过程中分布的变化清楚地表明发生了 HCl 催化的脱水糖脱水和甲氧基苯酚转化为酚类化合物。因此,这项研究揭示了将 Py-GC × GC-TOFMS 与 HCA 相结合的方法的有效性,这有望有助于加速热解相互作用的研究。了解由此获得的热解相互作用对于最大限度地提高塑料/木质纤维素生物质中所需化学品和燃料的产量和质量至关重要。共热解过程中分布的变化清楚地表明发生了 HCl 催化的脱水糖脱水和甲氧基苯酚转化为酚类化合物。因此,这项研究揭示了将 Py-GC × GC-TOFMS 与 HCA 相结合的方法的有效性,这有望有助于加速热解相互作用的研究。了解由此获得的热解相互作用对于最大限度地提高塑料/木质纤维素生物质中所需化学品和燃料的产量和质量至关重要。共热解过程中分布的变化清楚地表明发生了 HCl 催化的脱水糖脱水和甲氧基苯酚转化为酚类化合物。因此,这项研究揭示了将 Py-GC × GC-TOFMS 与 HCA 相结合的方法的有效性,这有望有助于加速热解相互作用的研究。了解由此获得的热解相互作用对于最大限度地提高塑料/木质纤维素生物质中所需化学品和燃料的产量和质量至关重要。
更新日期:2020-11-01
down
wechat
bug