当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene templated growth of copper sulphide ‘flowers’ can suppress electromagnetic interference
Nanoscale Advances ( IF 4.7 ) Pub Date : 2020-06-30 , DOI: 10.1039/d0na00368a
Devansh Sharma 1 , Aishwarya V Menon 2 , Suryasarathi Bose 1
Affiliation  

With increasing usage of electronic gadgets in various fields, the problem of electromagnetic interference (EMI) has become eminent. To suppress this interference, lightweight materials that are non-corrosive in nature and easy to fabricate, design, integrate and process are in great demand. In the present study, we have grown copper sulphide ‘flowers’ on graphene oxide by a facile one pot hydrothermal technique. The growth time of the “flower-like” structure was optimised based on structural (XRD) and morphological analysis (SEM). Then, the as-prepared structures were dispersed in a PVDF matrix using melt blending. The bulk AC electrical conductivity and EMI shielding ability of the prepared composite were assessed, and it was observed that the nanocomposites exhibited an EMI shielding effectiveness up to −25 dB manifesting in 86% absorption of the incoming EM waves at a thickness of only 1 mm. Moreover, it was also observed that addition of hybrid nanoparticles has a better effect on the electromagnetic (EM) shielding performance compared to when the nanoparticles are added separately in terms of both total shielding effectiveness as well as absorption performance. A minimum skin depth of 0.38 mm was observed in the case of the hybrid nanostructure.

中文翻译:

硫化铜“花”的石墨烯模板生长可以抑制电磁干扰

随着电子产品在各个领域的使用越来越多,电磁干扰(EMI)问题已经变得突出。为了抑制这种干扰,对本质上无腐蚀性且易于制造、设计、集成和加工的轻质材料的需求量很大。在本研究中,我们通过简单的一锅水热技术在氧化石墨烯上生长了硫化铜“花”。基于结构(XRD)和形态分析(SEM)优化了“花状”结构的生长时间。然后,使用熔融共混将所制备的结构分散在 PVDF 基质中。评估了制备的复合材料的体 AC 电导率和 EMI 屏蔽能力,并且观察到纳米复合材料表现出高达 -25 dB 的 EMI 屏蔽效果,表明在仅 1 mm 的厚度处吸收了 86% 的传入 EM 波。此外,还观察到,与单独添加纳米颗粒相比,混合纳米颗粒的添加对电磁(EM)屏蔽性能有更好的影响,无论是在总屏蔽效果还是吸收性能方面。在混合纳米结构的情况下,观察到最小趋肤深度为 0.38 mm。还观察到,与单独添加纳米颗粒相比,在总屏蔽效果和吸收性能方面,添加混合纳米颗粒对电磁 (EM) 屏蔽性能有更好的影响。在混合纳米结构的情况下,观察到最小趋肤深度为 0.38 mm。还观察到,与单独添加纳米颗粒相比,在总屏蔽效果和吸收性能方面,添加混合纳米颗粒对电磁 (EM) 屏蔽性能有更好的影响。在混合纳米结构的情况下,观察到最小趋肤深度为 0.38 mm。
更新日期:2020-08-11
down
wechat
bug