当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A 3D nm-thin biomimetic membrane for ultimate molecular separation
Materials Horizons ( IF 13.3 ) Pub Date : 2020-06-29 , DOI: 10.1039/d0mh00853b
Tongshuai Wang 1, 2, 3, 4, 5 , Siwei Liang 1, 2, 3, 4 , Zhen Qi 1, 2, 3, 4 , Monika Biener 1, 2, 3, 4 , Thomas Voisin 1, 2, 3, 4 , Joshua A. Hammons 1, 2, 3, 4 , Ich C. Tran 1, 2, 3, 4 , Marcus A. Worsley 1, 2, 3, 4 , Tom Braun 1, 2, 3, 4 , Y. Morris Wang 1, 2, 3, 4 , Juergen Biener 1, 2, 3, 4 , Theodore Baumann 1, 2, 3, 4 , Sangil Kim 4, 5, 6, 7 , Jianchao Ye 1, 2, 3, 4
Affiliation  

Multi-functional membranes with high permeance and selectivity that can mimic nature's designs have tremendous industrial and bio-medical applications. Here, we report a novel concept of a 3D nanometer (nm)-thin membrane that can overcome the shortcomings of conventional membrane structures. Our 3D membrane is composed of two three-dimensionally interwoven channels that are separated by a continuous nm-thin amorphous TiO2 layer. This 3D architecture dramatically increases the surface area by 6000 times, coupled with an ultra-short diffusion distance through the 24 nm-thin selective layer that allows for ultrafast gas and water transport, ∼900 l m−2 h−1 bar−1. The 3D membrane also exhibits a very high ion rejection (R ∼ 100% for potassium ferricyanide) due to the combined size- and charge-based exclusion mechanisms. The combination of high ion rejection and ultrafast permeation makes our 3DM superior to the state-of-the-art high-flux membranes whose performances are limited by the flux-rejection tradeoff. Furthermore, its ultimate Li+ selectivity over polysulfide or gas can potentially solve major technical challenges in energy storage applications, such as lithiumsulfur or lithiumO2 batteries.

中文翻译:

3D纳米薄的仿生膜,可实现最终分子分离

可以模仿自然设计的具有高渗透性和选择性的多功能膜在工业和生物医学领域都有巨大的应用。在这里,我们报告了3D纳米(nm)薄膜的新颖概念,它可以克服常规薄膜结构的缺点。我们的3D膜由两个三维交织的通道组成,这些通道被连续的nm薄的非晶TiO 2层隔开。这种3D架构极大地增加了6000倍的表面积,并通过24 nm薄的选择层实现了超短的扩散距离,从而实现了超快的气体和水传输,约900 lm -2 h -1 bar -1。由于结合了基于尺寸和电荷的排阻机制,因此3D膜还具有很高的离子截留率(铁氰化钾的R约为100%)。高离子截留率和超快渗透性的结合使我们的3DM优于最新的高通量膜,其性能受到通量排斥权衡的限制。此外,它的最终栗+选择性超过聚硫或气体可以潜在解决在能量储存应用重大的技术挑战,如锂-硫或锂- ö 2电池。
更新日期:2020-09-01
down
wechat
bug