当前位置: X-MOL 学术IEEE Electron Device Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Transport in 40-nm MOSFETs at Deep-Cryogenic Temperatures
IEEE Electron Device Letters ( IF 4.9 ) Pub Date : 2020-01-01 , DOI: 10.1109/led.2020.2995645
T.-Y. Yang , A. Ruffino , J. Michniewicz , Y. Peng , E. Charbon , M. F. Gonzalez-Zalba

In this letter, we characterize the electrical properties of commercial bulk 40-nm MOSFETs at room and deep cryogenic temperatures, with a focus on quantum information processing (QIP) applications. At 50 mK, the devices operate as classical FETs or quantum dot devices when either a high or low drain bias is applied, respectively. The operation in classical regime shows improved transconductance and subthreshold slope with respect to 300 K. In the quantum regime, all measured devices show Coulomb blockade. This is explained by the formation of quantum dots in the channel, for which a model is proposed. The variability in parameters, important for quantum computing scaling, is also quantified. Our results show that bulk 40-nm node MOSFETs can be readily used for the co-integration of cryo-CMOS classical-quantum circuits at deep cryogenic temperatures and that the variability approaches the uniformity requirements to enable shared control.

中文翻译:

深低温下 40-nm MOSFET 中的量子传输

在这封信中,我们描述了商用块状 40-nm MOSFET 在室温和深低温下的电气特性,重点是量子信息处理 (QIP) 应用。在 50 mK 时,当分别施加高或低漏极偏压时,这些器件可作为经典 FET 或量子点器件运行。经典状态下的操作显示出相对于 300 K 的改善的跨导和亚阈值斜率。在量子状态下,所有测量的设备都显示出库仑阻塞。这可以通过通道中量子点的形成来解释,为此提出了一个模型。对量子计算扩展很重要的参数的可变性也被量化。
更新日期:2020-01-01
down
wechat
bug