当前位置: X-MOL 学术SIAM J. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determinant-Preserving Sparsification of SDDM Matrices
SIAM Journal on Computing ( IF 1.6 ) Pub Date : 2020-03-10 , DOI: 10.1137/18m1165979
David Durfee , John Peebles , Richard Peng , Anup B. Rao

SIAM Journal on Computing, Ahead of Print.
We show that variants of spectral sparsification routines can preserve the total spanning tree counts of graphs. By Kirchhoff's matrix-tree theorem, this is equivalent to preserving the determinant of a graph Laplacian minor or, equivalently, of any symmetric diagonally dominant matrix (SDDM). Our analyses utilize this combinatorial connection to bridge the gap between statistical leverage scores/effective resistances and the analysis of random graphs by Janson [Combin. Probab. Comput., 3 (1994), pp. 97--126]. This leads to a routine that, in quadratic time, sparsifies a graph down to about $n^{1.5}$ edges in a way that preserves both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs. We give an algorithm that computes a $(1 \pm \delta)$ approximation to the determinant of any SDDM matrix with constant probability in about $n^2 \delta^{-2}$ time. This is the first routine for graphs that outperforms general-purpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates, in about $n^2 \delta^{-2}$ time, a spanning tree of a weighted undirected graph from a distribution with a total variation distance of $\delta$ from the $\boldsymbol{\mathit{w}}$-uniform distribution.


中文翻译:

SDDM矩阵的行列式保稀疏

《 SIAM计算杂志》,预印本。
我们表明频谱稀疏例程的变体可以保留图的总生成树计数。根据基尔霍夫的矩阵树定理,这等同于保留图拉普拉斯小数的行列式,或者等效于任何对称对角占优矩阵(SDDM)的行列式。我们的分析利用这种组合联系来弥合统计杠杆得分/有效阻力与Janson [Combin.com的随机图分析之间的差距。Probab。计算(3)(1994),第97--126页]。这导致了一个例程,即在二次时间内将图稀疏化到大约$ n ^ {1.5} $个边,这样既保留了行列式的确定性,又保留了生成树的分布(假设稀疏图被视为随机对象)。扩展该算法以与Schur补和近似Choleksy分解一起使用,将导致对生成树进行计数和采样的算法,这对于密集图几乎是最佳的。我们给出了一种算法,该算法在大约$ n ^ 2 \ delta ^ {-2} $的时间内,以恒定概率计算与任何SDDM矩阵的行列式近似的$(1 \ pm \ delta)$。这是图的第一个例程,其性能优于用于计算任意矩阵行列式的通用例程。我们还给出了一种算法,该算法可在大约$ n ^ 2 \ delta ^ {-2} $的时间内生成一个加权无向图的生成树,该分布树的分布与$ \ boldsymbol的总变化距离为$ \ delta $ {\ mathit {w}} $-均匀分布。我们给出了一种算法,该算法在大约$ n ^ 2 \ delta ^ {-2} $的时间内,以恒定概率计算与任何SDDM矩阵的行列式近似的$(1 \ pm \ delta)$。这是图的第一个例程,其性能优于用于计算任意矩阵行列式的通用例程。我们还给出了一种算法,该算法可在大约$ n ^ 2 \ delta ^ {-2} $的时间内生成一个加权无向图的生成树,该分布树的分布与$ \ boldsymbol的总变化距离为$ \ delta $ {\ mathit {w}} $-均匀分布。我们给出了一种算法,该算法在大约$ n ^ 2 \ delta ^ {-2} $的时间内,以恒定概率计算与任何SDDM矩阵的行列式近似的$(1 \ pm \ delta)$。这是图的第一个例程,其性能优于用于计算任意矩阵行列式的通用例程。我们还给出了一种算法,该算法可在大约$ n ^ 2 \ delta ^ {-2} $的时间内生成一个加权无向图的生成树,该分布树的分布与$ \ boldsymbol的总变化距离为$ \ delta $ {\ mathit {w}} $-均匀分布。
更新日期:2020-03-10
down
wechat
bug