当前位置: X-MOL 学术Multiscale Modeling Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments
Multiscale Modeling and Simulation ( IF 1.6 ) Pub Date : 2020-06-11 , DOI: 10.1137/19m1239003
Carina Bringedal , Lars von Wolff , Iuliu Sorin Pop

Multiscale Modeling &Simulation, Volume 18, Issue 2, Page 1076-1112, January 2020.
We consider a model for precipitation and dissolution in a porous medium, where ions transported by a fluid through the pores can precipitate at the pore walls and form mineral. Also, the mineral can dissolve and become part of the fluid as ions. These processes lead to changes in the flow domain, which are not known a priori but depend on the concentration of the ions dissolved in the fluid. Such a system can be formulated through conservation equations for mass, momentum, and solute in a domain that evolves in time. In this case the fluid and mineral phases are separated by a sharp interface, which also evolves. We consider an alternative approach by introducing a phase field variable, which has a smooth, diffuse transition of nonzero width between the fluid and mineral phases. The evolution of the phase field variable is determined through the Allen--Cahn equation. We show that as the width of the diffuse transition zone approaches zero, the sharp-interface formulation is recovered. When we consider a periodically perforated domain mimicking a porous medium, the phase field formulation is upscaled to Darcy scale by homogenization. Then, the average of the phase field variable represents the porosity. Through cell problems, the effective diffusion and permeability matrices are dependent on the phase field variable. We consider numerical examples to show the behavior of the phase field formulation. We show the effect of flow on the mineral dissolution, and we address the effect of the width of the diffuse interface in the cell problems for both a perforated porous medium and a thin strip.


中文翻译:

多孔介质中沉淀和溶解过程的相场建模:放大和数值实验

多尺度建模与仿真,第18卷,第2期,第1076-1112页,2020年1月。
我们考虑一种在多孔介质中沉淀和溶解的模型,在该模型中,流体通过孔传输的离子可以在孔壁上沉淀并形成矿物质。同样,矿物质可以溶解并成为离子的一部分。这些过程导致流动域的变化,这是先验未知的,但取决于溶解在流体中的离子的浓度。可以通过随时间变化的域中的质量,动量和溶质守恒方程式来建立这样的系统。在这种情况下,流体和矿物相被尖锐的界面隔开,该界面也逐渐形成。我们考虑通过引入一个相场变量来考虑另一种方法,该变量在流体和矿物相之间具有非零宽度的平滑扩散过渡。通过艾伦-卡恩方程确定相场变量的演变。我们表明,当扩散过渡区的宽度接近零时,将恢复清晰的界面公式。当我们考虑模仿多孔介质的周期性穿孔区域时,通过均质化将相场公式放大至达西尺度。然后,相场变量的平均值代表孔隙率。通过单元问题,有效扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。我们表明,当扩散过渡区的宽度接近零时,将恢复清晰的界面公式。当我们考虑模仿多孔介质的周期性穿孔区域时,通过均质化将相场公式放大至达西尺度。然后,相场变量的平均值代表孔隙率。通过单元问题,有效扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。我们表明,当扩散过渡区的宽度接近零时,将恢复清晰的界面公式。当我们考虑模仿多孔介质的周期性穿孔区域时,通过均质化将相场公式放大至达西尺度。然后,相场变量的平均值代表孔隙率。通过单元问题,有效扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。当我们考虑模仿多孔介质的周期性穿孔区域时,通过均质化将相场公式放大至达西尺度。然后,相场变量的平均值代表孔隙率。通过单元问题,有效扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。当我们考虑模仿多孔介质的周期性穿孔区域时,通过均质化将相场公式放大至达西尺度。然后,相场变量的平均值代表孔隙率。通过单元问题,有效扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。有效的扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。有效的扩散和渗透率矩阵取决于相场变量。我们考虑数值示例以显示相场公式的行为。我们显示了流动对矿物溶解的影响,并且我们解决了多孔多孔介质和细条在单元问题中扩散界面宽度的影响。
更新日期:2020-06-11
down
wechat
bug