当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition - Reevaluate the role of conductive materials.
Water Research ( IF 12.8 ) Pub Date : 2020-06-30 , DOI: 10.1016/j.watres.2020.116094
Wangwang Yan 1 , Manisha Mukherjee 2 , Yan Zhou 3
Affiliation  

Thermal hydrolysis pretreatment (THP) and anaerobic digestion (AD) integrated (THP-AD) process is a promising process for sludge management. However, the high ammonia production during the THP-AD process severely affects system's stability and performance. Conductive materials are widely reported to stimulate AD, thus they are potentially helpful in alleviating ammonia inhibition. This study investigated the effects of three widely studied conductive materials, i.e. zero-valent iron (ZVI), magnetite nanoparticles (Mag.) and powder activated carbon (PAC), on THP-AD process. Results showed that all the tested materials could effectively stimulate methanogenesis process under non-ammonia inhibition conditions. However, upon ammonia stress, these materials behaved distinctively with the best methanogenic performance in ZVI group followed by Mag. Group, and even worsened inhibition occurred in PAC group. The mechanisms behind were investigated from two levels–the reaction kinetics of each anaerobic digestion step and the responses of intracellular metabolism. It is revealed that ZVI effectively promoted all AD reactions, especially the energy unfavorable propanoate and butanoate metabolism and overall methanogenesis. In addition, ZVI likely acted as intracellular electron shuttles, and the conjunction point of ZVI to electron transfer system was identified as EtfAB: quinone oxidoreductase. On the contrary, the declined methanogenic performance in PAC group was attributed to selectively stimulated the growth of acetoclastic methanogen – Methanosaeta, which is sensitive to ammonia toxicity. The proteomic information further revealed that ammonia stress was unfavorable to the formation of direct interspecies electron transfer between syntrophic anaerobes. Overall, the present study provides fundamental knowledge about the role of different conductive materials in AD systems from intracellular proteomic level.



中文翻译:

在氨压力下,可以抑制直接种间电子转移(DIET)-重新评估导电材料的作用。

热水解预处理(THP)和厌氧消化(AD)集成(THP-AD)工艺是污泥管理的有前途的工艺。但是,THP-AD过程中氨的高产量严重影响了系统的稳定性和性能。导电材料被广泛报道可刺激AD,因此它们在缓解氨气抑制方面可能有帮助。这项研究调查了三种广泛研究的导电材料,即零价铁(ZVI),磁铁矿纳米颗粒(Mag。)和粉末活性炭(PAC)对THP-AD工艺的影响。结果表明,在非氨抑制条件下,所有测试材料均能有效地刺激甲烷生成过程。但是,在氨气胁迫下,这些材料表现出ZVI组最佳的产甲烷性能,其次是Mag。PAC组甚至抑制作用加重。从两个层面研究了背后的机制-每个厌氧消化步骤的反应动力学和细胞内代谢的反应。揭示ZVI有效地促进了所有AD反应,特别是能量不利的丙酸酯和丁酸酯的代谢以及整体甲烷生成。此外,ZVI可能充当细胞内的电子穿梭,并且ZVI与电子转移系统的结合点被确定为EtfAB:醌氧化还原酶。相反,PAC组的产甲烷性能下降是由于选择性刺激了乙酰碎裂性产甲烷菌的生长- 从两个层面研究了背后的机制-每个厌氧消化步骤的反应动力学和细胞内代谢的反应。揭示ZVI有效地促进了所有AD反应,特别是能量不利的丙酸酯和丁酸酯的代谢以及整体甲烷生成。此外,ZVI可能充当细胞内的电子穿梭,并且ZVI与电子转移系统的结合点被确定为EtfAB:醌氧化还原酶。相反,PAC组的产甲烷性能下降是由于选择性刺激了乙酰碎裂性产甲烷菌的生长- 从两个层面研究了背后的机制-每个厌氧消化步骤的反应动力学和细胞内代谢的反应。揭示ZVI有效地促进了所有AD反应,特别是能量不利的丙酸酯和丁酸酯的代谢以及整体甲烷生成。此外,ZVI可能充当细胞内的电子穿梭,并且ZVI与电子转移系统的结合点被确定为EtfAB:醌氧化还原酶。相反,PAC组的产甲烷性能下降是由于选择性刺激了乙酰碎裂性产甲烷菌的生长- 尤其是能量不利的丙酸和丁酸代谢和整体甲烷生成。此外,ZVI可能充当细胞内的电子穿梭,并且ZVI与电子转移系统的结合点被确定为EtfAB:醌氧化还原酶。相反,PAC组的产甲烷性能下降是由于选择性刺激了乙酰碎裂性产甲烷菌的生长- 特别是能量不利的丙酸酯和丁酸酯的代谢以及整体甲烷生成。此外,ZVI可能充当细胞内的电子穿梭,并且ZVI与电子转移系统的结合点被确定为EtfAB:醌氧化还原酶。相反,PAC组的产甲烷性能下降是由于选择性刺激了乙酰碎裂性产甲烷菌的生长-Methanosaeta,对氨中毒敏感。蛋白质组学信息进一步表明,氨胁迫不利于在同养厌氧菌之间直接种间电子转移的形成。总体而言,本研究从细胞内蛋白质组学水平提供了有关不同导电材料在AD系统中的作用的基础知识。

更新日期:2020-06-30
down
wechat
bug