当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanocomposites induced by two-dimensional titanium carbide nanosheets for highly efficient energy storage
Polymer Testing ( IF 5.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.polymertesting.2020.106712
Xiaoxu Liu , Ting Nie , Yanpeng Li , Jialong Li , Tian Wang , Yu Feng , Dong Yue , Jinghua Yin

Abstract Surface group-rich titanium carbide nanosheets (TCNSs) were successfully fabricated by simply etching Ti3AlC2 powders and used as dielectric fillers to promote the dielectric and energy storage performances of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based composites. The PVDF-HFP/TCNS composites realize a high dielectric constant and low dielectric loss of 16.3 and 0.034 at 102 Hz, respectively. Importantly, a high energy storage density (Ue) of 0.367 J cm−3 at 900 kV cm−1 and a high energy storage efficiency (η ≥ 78.9%) at a TCNS content of only 0.5 wt% are obtained, which indicates that incorporating TCNS is an efficient route in enhancing Ue while maintaining a high level η of the PVDF-HFP-based composites. According to detailed characterization results, a mechanism related to the reduction of lamellar crystals in the PVDF-HFP matrix is suggested. The above mechanism restricts the movement of polymer chains near the filler-matrix interface and is proposed to be responsible for the outstanding dielectric and energy storage performances. Consequently, this work provides a simple and effective method for fabricating highly efficient energy storage nanocomposites.

中文翻译:

二维碳化钛纳米片诱导的纳米复合材料用于高效储能

摘要 通过简单蚀刻 Ti3AlC2 粉末成功制备了富含表面基团的碳化钛纳米片 (TCNS),并将其用作介电填料,以提高聚偏二氟乙烯-六氟丙烯 (PVDF-HFP) 基复合材料的介电和储能性能。PVDF-HFP/TCNS 复合材料在 102 Hz 下分别实现了 16.3 和 0.034 的高介电常数和低介电损耗。重要的是,在 900 kV cm-1 下获得了 0.367 J cm-3 的高储能密度(Ue)和在 TCNS 含量仅为 0.5 wt% 时的高储能效率(η ≥ 78.9%),这表明结合TCNS 是提高 Ue 的有效途径,同时保持基于 PVDF-HFP 的复合材料的高水平 η。根据详细的表征结果,提出了与 PVDF-HFP 基体中层状晶体还原有关的机制。上述机制限制了聚合物链在填料-基体界面附近的运动,并被认为是其出色的介电和储能性能的原因。因此,这项工作为制造高效储能纳米复合材料提供了一种简单有效的方法。
更新日期:2020-09-01
down
wechat
bug