当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanics of shock induced pore collapse in poly(methyl methacrylate) (PMMA): Comparison of simulations and experiments
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2020-06-30 , DOI: 10.1016/j.jmps.2020.104075
Nirmal Kumar Rai , Emilio M. Escauriza , Daniel E. Eakins , H.S. Udaykumar

Head-to-head comparisons are made between calculations and experimental data on shock-driven pore collapse in the transparent material, poly(methyl methacrylate) (PMMA). Simulations are performed using SCIMITAR3D, an Eulerian sharp-interface multi-material code, while plate impact experiments are visualized using ultra-high speed x-ray imaging. The experiments and simulations are conducted over a wide range of loading conditions; from low strength loading regimes where adiabatic shear banding predominates all the way up to the regime where hydrodynamic pore collapse is expected. PMMA is modeled using an isotropic rate-dependent plasticity model for the deviatoric stress response and a Tillotson equation of state for the pressure. Calculations are primarily done in 2D, to save computational effort, but a limited number of 3D calculations are also performed to assess the differences entailed by the dimensionality. The 2D calculations are in fairly good agreement with the experimental results, for the evolution of pore shape. 3D calculations, while quite computationally intense, indeed produce better agreement with experimental data. The computations also agree well with the experiments in delineating the loading strength at which a transition from the strength-dominated to hydrodynamics-dominated pore collapse occurs. This work provides confidence in the ability of Eulerian, sharp interface computational techniques to correctly represent and understand the mechanics of shock-loaded porous condensed phase materials over a range of loading conditions.



中文翻译:

聚甲基丙烯酸甲酯(PMMA)冲击引起的孔塌陷的力学:模拟和实验的比较

在透明材料聚甲基丙烯酸甲酯(PMMA)的冲击驱动孔隙塌陷的计算和实验数据之间进行了正面对比。使用SCIMITAR3D(一种欧拉锐界面多材料代码)进行模拟,而板冲击实验则使用超高速X射线成像进行可视化。实验和模拟在广泛的负载条件下进行;从绝热剪切带占主导地位的低强度加载状态一直到预期流体动力孔塌陷的状态。对于偏应力响应,使用各向同性速率相关塑性模型对PMMA建模,对压力使用Tillotson状态方程建模。计算主要以2D进行,以节省计算量,但是还会执行有限数量的3D计算,以评估尺寸带来的差异。二维计算与实验结果非常吻合,可以用于孔隙形状的演变。3D计算虽然计算量很大,但确实与实验数据产生了更好的一致性。这些计算也与实验很好地吻合,描述了从强度控制到以流体力学控制的孔隙塌陷发生转变的加载强度。这项工作使人们对欧拉的敏锐界面计算技术能够正确表示和理解一系列载荷条件下的冲击载荷多孔凝聚相材料的力学性能充满信心。二维计算与实验结果非常吻合,可以用于孔隙形状的演变。3D计算虽然计算量很大,但确实与实验数据产生了更好的一致性。这些计算也与实验很好地吻合,描述了从强度控制到以流体力学控制的孔隙塌陷发生转变的加载强度。这项工作使人们对欧拉的敏锐界面计算技术能够正确表示和理解一系列载荷条件下的冲击载荷多孔凝聚相材料的力学性能充满信心。二维计算与实验结果非常吻合,可以用于孔隙形状的演变。3D计算虽然计算量很大,但确实与实验数据产生了更好的一致性。这些计算也与实验很好地吻合,描述了从强度控制到以流体力学控制的孔隙塌陷发生过渡的加载强度。这项工作使人们对欧拉的敏锐界面计算技术能够正确表示和理解一系列载荷条件下的冲击载荷多孔凝聚相材料的力学性能充满信心。这些计算也与实验很好地吻合,描述了从强度控制到以流体力学控制的孔隙塌陷发生过渡的加载强度。这项工作使人们对欧拉的敏锐界面计算技术能够正确表示和理解一系列载荷条件下的冲击载荷多孔凝聚相材料的力学性能充满信心。这些计算也与实验很好地吻合,描述了从强度控制到以流体力学控制的孔隙塌陷发生过渡的加载强度。这项工作使人们对欧拉的敏锐界面计算技术能够正确表示和理解一系列载荷条件下的冲击载荷多孔凝聚相材料的力学性能充满信心。

更新日期:2020-06-30
down
wechat
bug