当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On Extension of Near-wall Domain Decomposition to Turbulent Compressible Flows
Computers & Fluids ( IF 2.8 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.compfluid.2020.104629
M. Petrov , S. Utyuzhnikov , A. Chikitkin , V. Titarev

Abstract For modeling turbulent flow, the near-wall domain decomposition (NDD) approach initially proposed by the second author and recently developed in a number of papers proved to be very efficient. It leads to a non-overlapping domain decomposition with a Robin-to-Dirichlet map between an inner (near-wall) and outer regions. The regions are linked with each other via interface boundary conditions of Robin type which equivalently replace both the boundary conditions at the wall and simplified governing equations in the inner region. As has been shown, this approach can reduce the computational time by one order of magnitude while retaining sufficiently high accuracy. In the current paper, for the first time the technique is extended to compressible gas flows. In addition, it is modified to include an exact domain decomposition applied to the original Reynolds-averaged Navier-Stokes equations (RANS) without any simplifications near the wall. The efficiency and accuracy of the algorithm are demonstrated on a number of test cases with the use of the Spalart-Allmaras turbulence model for compressible flows implemented in the in-house code “FlowModellium”. Apart from the approximate NDD (ANDD) based on the thin boundary layer model, for the first time an exact NDD (ENDD) is implemented. The interface boundary conditions in both ANDD and ENDD approaches are consistent. Thereby, the ENDD can effectively complete the ANDD approach when it is needed.

中文翻译:

关于近壁域分解对湍流可压缩流的推广

摘要 对于湍流建模,由第二作者最初提出并最近在许多论文中开发的近壁域分解 (NDD) 方法被证明是非常有效的。它导致内部(近壁)和外部区域之间具有 Robin-to-Dirichlet 映射的非重叠域分解。这些区域通过 Robin 类型的界面边界条件相互连接,该条件等效地替代了壁上的边界条件和内部区域的简化控制方程。正如已经表明的那样,这种方法可以将计算时间减少一个数量级,同时保持足够高的精度。在当前的论文中,该技术首次扩展到可压缩气体流。此外,它被修改为包括应用于原始雷诺平均 Navier-Stokes 方程 (RANS) 的精确域分解,在壁附近没有任何简化。使用在内部代码“FlowModellium”中实现的可压缩流动的 Spalart-Allmaras 湍流模型,在许多测试案例中证明了该算法的效率和准确性。除了基于薄边界层模型的近似 NDD (ANDD) 外,首次实现了精确 NDD (ENDD)。ANDD和ENDD方法中的界面边界条件是一致的。从而,ENDD 可以在需要时有效地完成 ANDD 方法。使用在内部代码“FlowModellium”中实现的可压缩流动的 Spalart-Allmaras 湍流模型,在许多测试案例中证明了该算法的效率和准确性。除了基于薄边界层模型的近似 NDD (ANDD) 外,首次实现了精确 NDD (ENDD)。ANDD和ENDD方法中的界面边界条件是一致的。从而,ENDD 可以在需要时有效地完成 ANDD 方法。使用在内部代码“FlowModellium”中实现的可压缩流动的 Spalart-Allmaras 湍流模型,在许多测试案例中证明了该算法的效率和准确性。除了基于薄边界层模型的近似 NDD (ANDD) 外,首次实现了精确 NDD (ENDD)。ANDD和ENDD方法中的界面边界条件是一致的。从而,ENDD 可以在需要时有效地完成 ANDD 方法。ANDD和ENDD方法中的界面边界条件是一致的。从而,ENDD 可以在需要时有效地完成 ANDD 方法。ANDD和ENDD方法中的界面边界条件是一致的。从而,ENDD 可以在需要时有效地完成 ANDD 方法。
更新日期:2020-10-01
down
wechat
bug