当前位置: X-MOL 学术J. Genet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genomewide analysis of microsatellite markers based on sequenced database in two anuran species
Journal of Genetics ( IF 1.5 ) Pub Date : 2020-06-30 , DOI: 10.1007/s12041-020-01222-w
LI WEI , WEIWEI SHAO , LI MA , ZHIHUA LIN

Eukaryotic and prokaryotic cell genomes exhibit multiple microsatellites. In this study, we characterized microsatellites in genomes and genes of Nanorana parkeri and Xenopus laevis. This characterization was used for gene ontology (GO) analysis of coding sequences (CDS). Compared to the genome of N. parkeri , the genome of X. laevis is larger and contains more number of microsatellites, but the diversity of both species are similar. Trinucleotide repeats in the genome of N. parkeri and dinucleotide and tetranucleotide repeats in the genome of X. laevis were the most diverse. In both the species, diversity of microsatellites was highest in intergenic regions, followed by intron and exon regions, and lowest in coding regions. Microsatellites in CDS are thus subject to higher selective pressure. Many microsatellites are concentrated upstream and downstream of genes in both species, suggesting suppression of repeats in the middle of protein–CDS. Repeats are enriched in regions near gene termini purely due to the biophysical constraints of protein structure. In GO analysis, two and five unique GO terms, only found in N. parkeri and X. laevis , respectively, indicate advantageous mutations during species evolution. Biological process, cellular component and molecular function ontology reflected in the GO analysis predicted that the microsatellites located in CDS can alter protein function and may provide a molecular basis for species adaptation to new and changing environments.

中文翻译:

基于测序数据库的两种无尾猴微卫星标记全基因组分析

真核和原核细胞基因组表现出多个微卫星。在这项研究中,我们对 Nanorana parkeri 和非洲爪蟾的基因组和基因中的微卫星进行了表征。该表征用于编码序列 (CDS) 的基因本体 (GO) 分析。与 N. parkeri 的基因组相比,X. laevis 的基因组更大,包含的微卫星数量更多,但两种物种的多样性相似。N. parkeri 基因组中的三核苷酸重复序列和 X. laevis 基因组中的二核苷酸和四核苷酸重复序列最为多样化。在这两个物种中,微卫星的多样性在基因间区最高,其次是内含子和外显子区,编码区最低。CDS 中的微卫星因此受到更高的选择压力。许多微卫星集中在两个物种基因的上游和下游,表明蛋白质-CDS 中间的重复受到抑制。由于蛋白质结构的生物物理限制,重复在基因末端附近的区域中富集。在 GO 分析中,分别仅在 N. parkeri 和 X. laevis 中发现的两个和五个独特的 GO 术语表明物种进化过程中的有利突变。GO分析反映的生物过程、细胞成分和分子功能本体预测,位于CDS中的微卫星可以改变蛋白质功能,并可能为物种适应新的和不断变化的环境提供分子基础。由于蛋白质结构的生物物理限制,重复在基因末端附近的区域中富集。在 GO 分析中,分别仅在 N. parkeri 和 X. laevis 中发现的两个和五个独特的 GO 术语表明物种进化过程中的有利突变。GO分析反映的生物过程、细胞成分和分子功能本体预测,位于CDS中的微卫星可以改变蛋白质功能,并可能为物种适应新的和不断变化的环境提供分子基础。由于蛋白质结构的生物物理限制,重复在基因末端附近的区域中富集。在 GO 分析中,分别仅在 N. parkeri 和 X. laevis 中发现的两个和五个独特的 GO 术语表明物种进化过程中的有利突变。GO分析反映的生物过程、细胞成分和分子功能本体预测,位于CDS中的微卫星可以改变蛋白质功能,并可能为物种适应新的和不断变化的环境提供分子基础。
更新日期:2020-06-30
down
wechat
bug