当前位置: X-MOL 学术J. Reinf. Plast. Compos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rotomolding and polyethylene composites with rotomolded lignocellulosic materials: A review
Journal of Reinforced Plastics and Composites ( IF 3.1 ) Pub Date : 2020-04-04 , DOI: 10.1177/0731684420916529
Lumirca Del Valle Espinoza León 1 , Viviane Alves Escocio 1 , Leila Lea Yuan Visconte 1, 2 , Julio Cesar Jandorno Junior 1 , Elen Beatriz Acordi Vasques Pacheco 1, 2
Affiliation  

Rotomolding is a versatile process used in the manufacture of thermoplastic polymeric materials to produce large hollow plastic parts. The aim of this review article was to discuss the rotomolding process and show the properties of the polyethylene composite and rotomolded lignocellulosic fibers, which are processed for prolonged periods under temperature. The main process parameters studied are the shaft speed of the equipment, molding temperature, polymer particle size, polymer melt flow index, and amount of material, which must be well controlled to achieve a non-degraded product with homogeneous thickness and no porosity. Rotomolded composites containing sisal, pine, coir, banana, flax, and maple wood fibers, among others, have been evaluated primarily for their mechanical (impact, flexural, and tensile strength) and morphological properties. The type, content, and treatment of lignocellulosic fillers are the most widely studied variables in polyethylene-based rotomolded composites. Fiber content was the variable that most influenced mechanical properties, particularly impact strength and hardness due to the voids formed by the hydrodynamic volume between the polymer matrix and lignocellulosic filler. Chemical treatment of the fiber by mercerization with NaOH made it more hydrophobic and the addition of maleic anhydride-grafted polyethylene as a coupling agent improved the interfacial adhesion between the non-polar polymer matrix and polar filler. However, the best mechanical property results were obtained with the use of maleic anhydride-grafted polyethylene.

中文翻译:

具有滚塑木质纤维素材料的滚塑和聚乙烯复合材料:综述

滚塑是一种通用工艺,用于制造热塑性聚合物材料以生产大型中空塑料部件。这篇评论文章的目的是讨论滚塑工艺并展示聚乙烯复合材料和滚塑木质纤维素纤维的特性,这些纤维在温度下长时间加工。研究的主要工艺参数是设备的轴速、成型温度、聚合物粒度、聚合物熔体流动指数和材料量,必须很好地控制这些参数以实现厚度均匀且无孔隙的非降解产品。包含剑麻、松树、椰壳纤维、香蕉、亚麻和枫木纤维等的滚塑复合材料已被主要评估其机械(冲击、弯曲和拉伸强度)和形态特性。木质纤维素填料的类型、含量和处理是聚乙烯基滚塑复合材料中研究最广泛的变量。纤维含量是对机械性能影响最大的变量,特别是冲击强度和硬度,这是由于聚合物基质和木质纤维素填料之间的流体力学体积形成的空隙。通过用 NaOH 丝光对纤维进行化学处理使其更加疏水,加入马来酸酐接枝聚乙烯作为偶联剂改善了非极性聚合物基体和极性填料之间的界面粘合力。然而,使用马来酸酐接枝的聚乙烯获得了最好的机械性能结果。木质纤维素填料的处理和处理是聚乙烯基滚塑复合材料中研究最广泛的变量。纤维含量是对机械性能影响最大的变量,特别是冲击强度和硬度,这是由于聚合物基质和木质纤维素填料之间的流体力学体积形成的空隙。通过用 NaOH 丝光对纤维进行化学处理使其更加疏水,加入马来酸酐接枝聚乙烯作为偶联剂改善了非极性聚合物基体和极性填料之间的界面粘合力。然而,使用马来酸酐接枝的聚乙烯获得了最好的机械性能结果。木质纤维素填料的处理和处理是聚乙烯基滚塑复合材料中研究最广泛的变量。纤维含量是对机械性能影响最大的变量,尤其是冲击强度和硬度,这是由于聚合物基质和木质纤维素填料之间的流体力学体积形成的空隙。通过用 NaOH 丝光对纤维进行化学处理使其更加疏水,加入马来酸酐接枝聚乙烯作为偶联剂改善了非极性聚合物基体和极性填料之间的界面粘合力。然而,使用马来酸酐接枝的聚乙烯获得了最好的机械性能结果。由于聚合物基质和木质纤维素填料之间的流体力学体积形成的空隙,因此具有特别的冲击强度和硬度。通过用 NaOH 丝光对纤维进行化学处理使其更加疏水,加入马来酸酐接枝聚乙烯作为偶联剂改善了非极性聚合物基体和极性填料之间的界面粘合力。然而,使用马来酸酐接枝的聚乙烯获得了最好的机械性能结果。由于聚合物基质和木质纤维素填料之间的流体力学体积形成的空隙,因此具有特别的冲击强度和硬度。通过用 NaOH 丝光对纤维进行化学处理使其更加疏水,加入马来酸酐接枝聚乙烯作为偶联剂改善了非极性聚合物基体和极性填料之间的界面粘合力。然而,使用马来酸酐接枝的聚乙烯获得了最好的机械性能结果。
更新日期:2020-04-04
down
wechat
bug