当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
APX-Hardness and Approximation for the k-Burning Number Problem
arXiv - CS - Computational Complexity Pub Date : 2020-06-25 , DOI: arxiv-2006.14733
Debajyoti Mondal; N. Parthiabn; V. Kavitha; Indra Rajasingh

Consider an information diffusion process on a graph $G$ that starts with $k>0$ burnt vertices, and at each subsequent step, burns the neighbors of the currently burnt vertices, as well as $k$ other unburnt vertices. The \emph{$k$-burning number} of $G$ is the minimum number of steps $b_k(G)$ such that all the vertices can be burned within $b_k(G)$ steps. Note that the last step may have smaller than $k$ unburnt vertices available, where all of them are burned. The $1$-burning number coincides with the well-known burning number problem, which was proposed to model the spread of social contagion. The generalization to $k$-burning number allows us to examine different worst-case contagion scenarios by varying the spread factor $k$. In this paper we prove that computing $k$-burning number is APX-hard, for any fixed constant $k$. We then give an $O((n+m)\log n)$-time 3-approximation algorithm for computing $k$-burning number, for any $k\ge 1$, where $n$ and $m$ are the number of vertices and edges, respectively. Finally, we show that even if the burning sources are given as an input, computing a burning sequence itself is an NP-hard problem.
更新日期:2020-06-29

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug