当前位置: X-MOL 学术Nat. Rev. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The periodic table and the physics that drives it
Nature Reviews Chemistry ( IF 36.3 ) Pub Date : 2020-06-29 , DOI: 10.1038/s41570-020-0195-y
Peter Schwerdtfeger 1, 2 , Odile R Smits 1 , Pekka Pyykkö 3
Affiliation  

Mendeleev’s introduction of the periodic table of elements is one of the most important milestones in the history of chemistry, as it brought order into the known chemical and physical behaviour of the elements. The periodic table can be seen as parallel to the Standard Model in particle physics, in which the elementary particles known today can be ordered according to their intrinsic properties. The underlying fundamental theory to describe the interactions between particles comes from quantum theory or, more specifically, from quantum field theory and its inherent symmetries. In the periodic table, the elements are placed into a certain period and group based on electronic configurations that originate from the Pauli and Aufbau principles for the electrons surrounding a positively charged nucleus. This order enables us to approximately predict the chemical and physical properties of elements. Apparent anomalies can arise from relativistic effects, partial-screening phenomena (of type lanthanide contraction) and the compact size of the first shell of every l-value. Further, ambiguities in electron configurations and the breakdown of assigning a dominant configuration, owing to configuration mixing and dense spectra for the heaviest elements in the periodic table. For the short-lived transactinides, the nuclear stability becomes an important factor in chemical studies. Nuclear stability, decay rates, spectra and reaction cross sections are also important for predicting the astrophysical origin of the elements, including the production of the heavy elements beyond iron in supernova explosions or neutron-star mergers. In this Perspective, we critically analyse the periodic table of elements and the current status of theoretical predictions and origins for the heaviest elements, which combine both quantum chemistry and physics.



中文翻译:

周期表和驱动它的物理学

门捷列夫引入元素周期表是化学史上最重要的里程碑之一,因为它为已知的元素化学和物理行为带来了秩序。元素周期表可以看作与粒子物理学中的标准模型平行,其中今天已知的基本粒子可以根据其固有属性进行排序。描述粒子间相互作用的基本理论来自量子理论,或者更具体地说,来自量子场论及其固有的对称性。在元素周期表中,元素根据电子配置被置于某个周期和组中,这些电子配置源自围绕带正电的原子核的电子的 Pauli 和 Aufbau 原理。这个顺序使我们能够大致预测元素的化学和物理性质。明显的异常可能来自相对论效应、部分屏蔽现象(镧系元素收缩类型)和每个第一壳层的紧凑尺寸l-值。此外,由于元素周期表中最重元素的构型混合和密集光谱,电子构型的歧义和分配主导构型的分解。对于短寿命的反式锕系元素,核稳定性成为化学研究中的一个重要因素。核稳定性、衰变率、光谱和反应截面对于预测元素的天体物理学起源也很重要,包括在超新星爆炸或中子星合并中产生除铁以外的重元素。在这个观点中,我们批判性地分析了元素周期表和理论预测的现状以及最重元素的起源,它结合了量子化学和物理学。

更新日期:2020-06-29
down
wechat
bug