当前位置: X-MOL 学术Nat. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep-sea eruptions boosted by induced fuel–coolant explosions
Nature Geoscience ( IF 18.3 ) Pub Date : 2020-06-29 , DOI: 10.1038/s41561-020-0603-4
T. Dürig , J. D. L. White , A. P. Murch , B. Zimanowski , R. Büttner , D. Mele , P. Dellino , R. J. Carey , L. S. Schmidt , N. Spitznagel

The majority of Earth’s volcanic eruptions occur beneath the sea, but the limited number of direct observations and samples limits our understanding of these unseen events. Subaerial eruptions lend some insight, but direct extrapolation from the subaerial to the deep sea is precluded by the great differences in pressure, thermal conditions, density and rheology, and the interplay among them. Here we present laboratory fragmentation experiments that mimic deep-sea explosive eruptions and compare our laboratory observations with those from the kilometre-deep submarine eruption of Havre Volcano, Kermadec Arc, New Zealand, in 2012. We find that the Havre eruption involved explosive fragmentation of magma by a pressure-insensitive interaction between cool water and hot magma, termed an induced fuel–coolant interaction. The laboratory experiments show that this water–magma interaction is initiated by the formation of cracks in cooling magma into which the water coolant can infiltrate, driving explosive fragmentation. Explosive submarine eruptions have previously been considered unlikely because stabilization of a vapour film at the magma–water contact was thought to be a key requirement but is suppressed at depths exceeding 100 m. However, here we demonstrate that these induced fuel–coolant interactions between magma and water can occur in a range of wet environments regardless of pressure, from the subaerial to the deep sea, and may operate on different planets, as well as apply to materials other than magma and water.



中文翻译:

诱导的燃料冷却液爆炸助长了深海喷发

地球上大多数火山喷发都发生在海底,但是直接观测和采样的数量有限,限制了我们对这些看不见的事件的理解。地下喷发提供了一些见识,但是由于压力,温度条件,密度和流变学以及它们之间的相互作用的巨大差异,无法从地下直接向深海进行推断。在这里,我们介绍了模仿深海爆炸爆发的实验室破碎实验,并将我们的实验室观测结果与2012年新西兰凯马德克弧阿弗火山深海喷发的观测结果进行了比较。我们发现,哈弗火山爆发涉及到岩浆是指冷水和热岩浆之间的压力不敏感相互作用,称为诱导的燃料-冷却剂相互作用。实验室实验表明,这种水与岩浆的相互作用是由冷却岩浆中裂缝的形成引发的,水冷却剂可以渗入其中,从而导致爆炸性碎片。以前认为爆炸性海底火山爆发不太可能,因为稳定岩浆与水接触处的蒸气膜是关键要求,但在超过100 m的深度受到抑制。但是,在这里我们证明,岩浆和水之间的这些燃料-冷却剂相互作用可以在一定范围的潮湿环境中发生,无论压力如何,从地下到深海,并且可能在不同的行星上运行,以及适用于其他材料而不是岩浆和水。造成爆炸碎片。以前认为爆炸性海底火山爆发不太可能,因为稳定岩浆与水接触处的蒸气膜是关键要求,但在超过100 m的深度受到抑制。但是,在这里我们证明,岩浆和水之间的这些燃料-冷却剂相互作用可以在一定范围的潮湿环境中发生,无论压力如何,从地下到深海,并且可能在不同的行星上运行,以及适用于其他材料而不是岩浆和水。造成爆炸碎片。以前认为爆炸性海底火山爆发不太可能,因为稳定岩浆与水接触处的蒸气膜是关键要求,但在超过100 m的深度受到抑制。但是,在这里我们证明,岩浆和水之间的这些燃料-冷却剂相互作用可以在一定范围的潮湿环境中发生,无论压力如何,从地下到深海,并且可能在不同的行星上运行,以及适用于其他材料而不是岩浆和水。

更新日期:2020-06-29
down
wechat
bug