当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces
Nanophotonics ( IF 7.5 ) Pub Date : 2020-06-29 , DOI: 10.1515/nanoph-2020-0227
Fenghua Shi 1 , Jing Wen 2 , Dangyuan Lei 3
Affiliation  

Abstract Lattice light-sheet microscopy (LLSM) was developed for long-term live-cell imaging with ultra-fine three-dimensional (3D) spatial resolution, high temporal resolution, and low photo-toxicity by illuminating the sample with a thin lattice-like light-sheet. Currently available schemes for generating thin lattice light-sheets often require complex optical designs. Meanwhile, limited by the bulky objective lens and optical components, the light throughput of existing LLSM systems is rather low. To circumvent the above problems, we utilize a dielectric metasurface of a single footprint to replace the conventional illumination modules used in the conventional LLSM and generate a lattice light-sheet with a ~3-fold broader illumination area and a significantly leveraged illumination efficiency, which consequently leads to a larger field of view with a higher temporal resolution at no extra cost of the spatial resolution. We demonstrate that the metasurface can manipulate spatial frequencies of an input laser beam in orthogonal directions independently to break the trade-off between the field of view and illumination efficiency of the lattice light-sheet. Compared to the conventional LLSM, our metasurface module serving as an ultra-compact illumination component for LLSM at an ease will potentially enable a finer spatial resolution with a larger numerical-aperture detection objective lens.

中文翻译:

通过介电超表面生成高效、大面积晶格光片

摘要 晶格光片显微镜 (LLSM) 被开发用于长期活细胞成像,通过用薄晶格照射样品,具有超精细的三维 (3D) 空间分辨率、高时间分辨率和低光毒性。像光片。当前可用的用于生成薄晶格光片的方案通常需要复杂的光学设计。同时,受体积庞大的物镜和光学元件的限制,现有 LLSM 系统的光通量相当低。为了避免上述问题,我们利用单个足迹的介电超表面来代替传统 LLSM 中使用的传统照明模块,并生成具有约 3 倍更宽照明区域和显着杠杆照明效率的晶格光片,这因此导致更大的视野和更高的时间分辨率,而不需要额外的空间分辨率成本。我们证明了超表面可以独立地在正交方向上操纵输入激光束的空间频率,以打破晶格光片的视野和照明效率之间的权衡。与传统的 LLSM 相比,我们的超表面模块可轻松用作 LLSM 的超紧凑照明组件,将有可能通过更大的数值孔径检测物镜实现更精细的空间分辨率。我们证明了超表面可以独立地在正交方向上操纵输入激光束的空间频率,以打破晶格光片的视野和照明效率之间的权衡。与传统的 LLSM 相比,我们的超表面模块可轻松用作 LLSM 的超紧凑照明组件,将有可能通过更大的数值孔径检测物镜实现更精细的空间分辨率。我们证明了超表面可以独立地在正交方向上操纵输入激光束的空间频率,以打破晶格光片的视野和照明效率之间的权衡。与传统的 LLSM 相比,我们的超表面模块可轻松用作 LLSM 的超紧凑照明组件,将有可能通过更大的数值孔径检测物镜实现更精细的空间分辨率。
更新日期:2020-06-29
down
wechat
bug