当前位置: X-MOL 学术Mathematika › 论文详情
AN OPTIMAL BOUND FOR THE RATIO BETWEEN ORDINARY AND UNIFORM EXPONENTS OF DIOPHANTINE APPROXIMATION
Mathematika ( IF 0.875 ) Pub Date : 2020-06-28 , DOI: 10.1112/mtk.12045
Antoine Marnat; Nikolay G. Moshchevitin

We provide a lower bound for the ratio between the ordinary and uniform exponents of both simultaneous Diophantine approximation to n real numbers and Diophantine approximation for one linear form in n variables. This question was first considered in the 1950s by Jarník who solved the problem for two real numbers and established certain bounds in higher dimension. Recently different authors reconsidered the question, solving the problem in dimension three with different methods. Considering a new concept of parametric geometry of numbers, Schmidt and Summerer conjectured that the optimal lower bound is reached at regular systems. It follows from a remarkable result of Roy that this lower bound is then optimal. In the present paper, we give a proof of this conjecture by Schmidt and Summerer.
更新日期:2020-06-29

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug