当前位置: X-MOL 学术BioEssays › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbiome Flexibility Provides New Perspectives in Coral Research
BioEssays ( IF 4 ) Pub Date : 2020-06-02 , DOI: 10.1002/bies.202000088
Helena Villela 1
Affiliation  

For almost 500 million years, scleractinian corals have been the main builders of coral reefs, which serve as habitats for thousands of marine species. Sometimes referred to as the “rainforests of the sea,” coral reefs are thought to be the most biodiverse marine ecosystem in the world. Within a coral reef, an individual coral animal also interacts with countless species of microorganisms, which, together with the host, form a functional biological unit called a metaorganism.

Coral‐associated microbes support vital functions of the metaorganism, such as energy and nutrient acquisition and control of pathogens, which promote the metaorganism's fitness. Coral–microbe associations can be more stable or more variable depending on several factors, such as the species of coral and environmental conditions. Although the importance of coral microbiomes has been known for decades, mysteries remain regarding coral microbiome diversity and flexibility (the ability to restructure the associated microbes in response to environmental changes), as well as the driving forces behind the two.

In this issue, Voolstra and Ziegler[1] propose the hypothesis that microbiome flexibility is important for corals to adapt to environmental changes in a more dynamic and quicker way than traditional organismal adaptation processes. The hypothesis was formulated based on the findings of two works published by the same research group, where the authors showed that: i) composition in coral‐associated bacteria differs across thermally variable environments; ii) microbiome flexibility is related to different thermal tolerance levels in coral hosts belonging to the same species, and iii) microbiome flexibility is different from distinct coral species.

This paper presents a comprehensive view on the topic of coral–microbe interactions, as well as provides a deeper examination of the uniqueness of each coral metaorganism. An innovative model is proposed that defines coral groups according to their microbiome flexibility levels and correlates this with coral physiological plasticity. Thus, the current work adds a new perspective on the study of coral–microbe interactions. However, studies on microbiome flexibility levels of other species of corals and how it impacts their physiological plasticity will help to corroborate the hypothesis.

“Adapting with microbial help: Microbiome flexibility facilitates rapid responses to environmental change” is a well‐written manuscript incorporating trustworthy experimental results from previous studies. The authors present their point of view about microbiome flexibility in coral metaorganisms and the possible consequences of this phenomenon. The manuscript opens the door for many questions regarding coral–microbiome interactions. What evolutionary advantages would there be for a coral metaorganism to exhibit microbial flexibility with each new environmental pressure it encounters? How variable would that be between different coral species and regions? Also, is microbial flexibility advantageous in a world where anthropogenic impacts are causing coral reef degradation and, consequently, increasing the abundances of heterotrophic microbes in the reefs’ bacterial communities?[2]

The hypothesis reinforces the importance of studying coral–microbe interactions and ongoing efforts to identify the specific mechanisms improving coral fitness in order to preserve and restore reef areas in a world under constant changes. Based on what we know about positive effects of microbiome manipulation via beneficial microorganisms for corals (BMCs),[3, 4] this paper opens up the possibility that microbiome flexibility can be exploited to promote coral resilience and resistance in order to overcome environmental pressures. Perhaps microbiome manipulation will become one of the most promising approaches to maintain coral health, reef biodiversity, and the balance of interconnected marine ecosystems.



中文翻译:

微生物组的灵活性为珊瑚研究提供了新的视角

在将近5亿年的时间里,巩膜珊瑚一直是珊瑚礁的主要建造者,它们是数千种海洋生物的栖息地。珊瑚礁有时被称为“海洋雨林”,被认为是世界上生物多样性最强的海洋生态系统。在珊瑚礁内,单独的珊瑚动物还会与无数种微生物相互作用,这些微生物与宿主共同构成一个功能性的生物单位,称为代谢生物。

与珊瑚有关的微生物支持微生物的重要功能,例如能量和营养的获取以及病原体的控制,从而促进了微生物的适应性。取决于多种因素,例如珊瑚的种类和环境条件,珊瑚与微生物之间的联系可能更稳定或更可变。尽管几十年来人们一直知道珊瑚微生物群的重要性,但关于珊瑚微生物群的多样性和灵活性(响应环境变化而重组相关微生物的能力)以及二者背后的驱动力,仍然存在着谜。

在这个问题中,Voolstra和Ziegler [ 1 ]提出了这样一个假说,即微生物组的柔韧性对于珊瑚以比传统的有机适应过程更动态和更快的方式适应环境变化很重要。该假说是根据同一研究小组发表的两篇论文的发现提出的,其中作者表明:i)珊瑚相关细菌的成分在热变环境中有所不同;ii)微生物组的柔韧性与属于同一物种的珊瑚寄主的不同耐热水平有关,并且iii)微生物组的柔韧性与不同的珊瑚物种不同。

本文提出了关于珊瑚与微生物相互作用的全面观点,并对每种珊瑚生物的独特性进行了更深入的研究。提出了一种创新模型,该模型根据其微生物组的柔性水平定义珊瑚群,并将其与珊瑚的生理可塑性联系起来。因此,当前的工作为珊瑚-微生物相互作用的研究提供了新的视角。但是,对其他珊瑚物种的微生物组柔韧性水平及其如何影响其生理可塑性的研究将有助于证实这一假设。

“在微生物的帮助下进行适应:微生物组的灵活性可以促进对环境变化的快速反应”,这是一篇精心撰写的手稿,结合了先前研究中值得信赖的实验结果。作者介绍了他们对珊瑚生物中微生物组灵活性的看法以及这种现象的可能后果。手稿为有关珊瑚与微生物组相互作用的许多问题打开了大门。珊瑚生物在遇到新的环境压力时具有微生物灵活性,这将具有哪些进化优势?不同珊瑚物种和地区之间的差异如何?此外,在人为影响导致珊瑚礁退化的世界中,微生物的灵活性是否具有优势,因此,[ 2 ]

该假说加强了研究珊瑚与微生物相互作用的重要性,并不断努力确定提高珊瑚适应性的特定机制,以便在不断变化的世界中保护和恢复珊瑚礁区域。基于我们所了解的通过有益于珊瑚的微生物(BMC)操纵微生物组的积极作用,[ 3,4 ]本文提出了可以利用微生物组的柔性来增强珊瑚的弹性和抵抗力以克服环境压力的可能性。也许微生物组操纵将成为维持珊瑚健康,珊瑚礁生物多样性以及相互联系的海洋生态系统之间最有前途的方法之一。

更新日期:2020-06-29
down
wechat
bug