当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer
Solar Energy ( IF 6.7 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.solener.2020.06.041
M. Marandi , N. Torabi , F. Ahangarani Farahani

Abstract In this study a co-sensitization strategy is utilized for fabrication of a simple type of quantum dot sensitized solar cells (QDSCs) with high power conversion efficiency. A transparent layer of hydrothermally grown TiO2 nanocrystals (NCs) was sensitized with CdS and CdSe QDs layers and applied as the photoanode of the cells. The CdS layer was deposited through a successive ionic layer adsorption and reaction (SILAR) approach with optimized number of cycles. The CdSe nanocrystalline layer was also formed by a fast and effective chemical bath deposition (CBD) method for co-sensitization. The CBD time was altered in a short range of 6–15 min while the deposition was well-performed and quality of the CdSe layer was quite acceptable. The ZnS passivating layer was finally over-deposited and photoanodes were applied in conventional structure of QDSCs using polysulfide electrolyte and CuS counter electrodes. The CBD time was optimized to find the best bandgap energy/band edge positions and deposition amount of the CdSe layer for higher energy conversion efficiencies. The best photovoltaic performance was achieved for the QDSC with CdSe co-sensitizing layer deposited at 12 min of the CBD process. This optimized cell demonstrated the photovoltaic parameters of Jsc = 22.2 mA/cm2, Voc = 628 mV, and power conversion efficiency of 6.8%. This efficiency was increased about 172% compared to that of reference cell with just CdS QDs as the light sensitizing layer.

中文翻译:

通过快速有效地形成 CdSe 纳米晶层,轻松制造性能良好的 CdS/CdSe 量子点敏化太阳能电池

摘要 在这项研究中,共敏化策略用于制造具有高功率转换效率的简单类型的量子点敏化太阳能电池 (QDSC)。水热生长的 TiO2 纳米晶体 (NCs) 的透明层用 CdS 和 CdSe QDs 层敏化,并用作电池的光电阳极。CdS 层是通过连续离子层吸附和反应 (SILAR) 方法以优化的循环次数沉积的。CdSe 纳米晶层也是通过快速有效的化学浴沉积 (CBD) 方法形成的,用于共敏化。CBD 时间在 6-15 分钟的短范围内发生了变化,而沉积效果良好且 CdSe 层的质量是完全可以接受的。最后过度沉积 ZnS 钝化层,并使用多硫化物电解质和 CuS 对电极将光阳极应用于 QDSC 的常规结构中。优化 CBD 时间以找到最佳带隙能量/带边缘位置和 CdSe 层的沉积量,以提高能量转换效率。在 CBD 工艺的 12 分钟沉积 CdSe 共敏化层的 QDSC 实现了最佳光伏性能。该优化电池的光伏参数为 Jsc = 22.2 mA/cm2,Voc = 628 mV,功率转换效率为 6.8%。与仅使用 CdS QD 作为光敏层的参考电池相比,该效率提高了约 172%。优化 CBD 时间以找到最佳带隙能量/带边缘位置和 CdSe 层的沉积量,以提高能量转换效率。在 CBD 工艺的 12 分钟沉积 CdSe 共敏化层的 QDSC 实现了最佳光伏性能。该优化电池的光伏参数为 Jsc = 22.2 mA/cm2,Voc = 628 mV,功率转换效率为 6.8%。与仅使用 CdS QD 作为光敏层的参考电池相比,该效率提高了约 172%。优化 CBD 时间以找到最佳带隙能量/带边缘位置和 CdSe 层的沉积量,以提高能量转换效率。在 CBD 工艺的 12 分钟沉积 CdSe 共敏化层的 QDSC 实现了最佳光伏性能。该优化电池的光伏参数为 Jsc = 22.2 mA/cm2,Voc = 628 mV,功率转换效率为 6.8%。与仅使用 CdS QD 作为光敏层的参考电池相比,该效率提高了约 172%。2 mA/cm2,Voc = 628 mV,功率转换效率为 6.8%。与仅使用 CdS QD 作为光敏层的参考电池相比,该效率提高了约 172%。2 mA/cm2,Voc = 628 mV,功率转换效率为 6.8%。与仅使用 CdS QD 作为光敏层的参考电池相比,该效率提高了约 172%。
更新日期:2020-09-01
down
wechat
bug