当前位置: X-MOL 学术Measurement › 论文详情
Ensemble Machine Learning Model for Corrosion Initiation Time Estimation of Embedded Steel Reinforced Self-Compacting Concrete
Measurement ( IF 3.364 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.measurement.2020.108141
Babatunde Abiodun Salami; Syed Masiur Rahman; Tajudeen Adeyinka Oyehan; Mohammed Maslehuddin; Salah U. Al Dulaijan

Corrosion initiation time of embedded steel is an important service life parameter, which depends on concrete material make-up, exposure environment, and duration of exposure. The determination of corrosion initiation time in the laboratory is arduous due to the activities involving the data gathering process. This study leverages the capability of machine learning (ML) models to estimate corrosion initiation time of embedded steel through corrosion potential measurement. Self-compacting concrete specimens were prepared with limestone powder addition to Portland cement. The corrosion potentials of the embedded steel in the specimens were measured during their exposure to 5% sodium chloride for an 8-month exposure period. Models were developed to estimate the corrosion potential of embedded steel using concrete mixtures and exposure periods as input variables. Comparing the performance results of the algorithms using correlation coefficient (CC) and root mean square error (RMSE) proved that random forest, an ensemble ML technique, to be the most efficient in estimating the corrosion initiation time of embedded steel in SCC.
更新日期:2020-06-29

 

全部期刊列表>>
AI核心技术
10years
自然科研线上培训服务
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug