当前位置: X-MOL 学术Digit. Signal Process. › 论文详情
Minimum kernel risk sensitive mean p-power loss algorithms and their performance analysis
Digital Signal Processing ( IF 2.871 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.dsp.2020.102797
Tao Zhang; Xuewei Huang; Shiyuan Wang

The least mean square (LMS) algorithm is optimal for combating Gaussian noises owing to the used minimum mean square error (MSE) criterion in its loss function. However, the MSE criterion is not efficient for non-Gaussian noises. To this end, a new robust minimum kernel risk sensitive mean p-power loss (MKRSP) algorithm is proposed to provide robustness against impulsive noises and improve filtering accuracy, simultaneously. The MKRSP algorithm can generalize the minimum kernel risk sensitive loss (MKRSL) algorithm by setting p=2, and improve filtering accuracy by setting a proper p. Further, the random-Fourier-features MKRSP (RMKRSP) algorithm is developed for improving robustness and filtering accuracy of MKRSP. And the steady-state excess mean square errors (SEMSEs) of MKRSP and RMKRSP are calculated for theoretical analysis. The correctness of the obtained SEMSEs are verified by simulations, and the accuracy advantages of MKRSP and RMKRSP are also confirmed in different noise environments.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug