当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Artificial neural network based crossover for evolutionary algorithms
Applied Soft Computing ( IF 5.472 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.asoc.2020.106512
Renato Tinós

Recombination is a powerful way of generating new solutions in Evolutionary Algorithms. There are many ways to implement recombination. Traditional recombination operators do not use information about parents, evolutionary process, or models for variable interaction in order to find better ways to recombine solutions. Some modern recombination operators use information about parents and models for variable interaction, but they cannot always be efficiently applied. We propose to use an artificial neural network to compute the recombination mask, given two parents. Here, a radial basis function network (RBFN) is trained online using past successful recombination cases obtained during the optimization performed by the evolutionary algorithm. The RBFN crossover (RBFNX) is used together with other recombination operators (here, uniform crossover is employed). Applying RBFNX has O(N) time complexity, where N is the dimension of the optimization problem. Results of experiments with genetic algorithms, applied to two binary optimization problems, and evolution strategies, applied to continuous optimization test problems, indicate that RBFNX is generally able to improve the successful recombination rates.
更新日期:2020-07-01

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug