当前位置: X-MOL 学术Rev. Mat. Complut. › 论文详情
Removability of zero modular capacity sets
Revista Matemática Complutense ( IF 0.855 ) Pub Date : 2020-06-29 , DOI: 10.1007/s13163-020-00361-z
Alberto Fiorenza, Flavia Giannetti

We introduce a notion of modular with a corresponding modular function space in order to build a modular capacity theory. We give two different definitions of capacity, one of them of variational type, the other one through either the modular of the test functions, or the modular of their gradients. We study, in both cases, the removability of sets of zero capacity in fairly general abstract Sobolev spaces with zero boundary values. As a key tool, we establish a modular Poincaré inequality. With the notion of modular function space in hands, we find a way to introduce a Banach function space, which allows to compare the zero capacity sets with respect to both notions. Thanks to this comparison, we characterize the compact sets of zero variational type capacity as removable sets. The paper is enriched with several examples, extending and unifying many results already known in literature in the settings of Musielak–Orlicz–Sobolev spaces, Lorentz–Sobolev spaces, variable exponent Sobolev spaces.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug