当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures
Journal of Power Sources ( IF 9.2 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.jpowsour.2020.228475
Kuan-Hung Chen , Min Ji Namkoong , Vishwas Goel , Chenglin Yang , Saeed Kazemiabnavi , S.M. Mortuza , Eric Kazyak , Jyoti Mazumder , Katsuyo Thornton , Jeff Sakamoto , Neil P. Dasgupta

Enabling high-energy-density lithium-ion batteries that can charge in less than 10 min would accelerate public acceptance of electric vehicles. However, in order to achieve high energy densities, thick electrodes are often used, which suffer from transport limitations. This leads to a tradeoff between power performance and energy density. Here, we demonstrate a laser-patterning process to produce three-dimensional graphite anode architectures. This process results in a highly ordered laser-patterned electrode (HOLE) with arrays of vertical pore channels through the anode thickness that serve as diffusion paths for rapid ionic transport. We apply the HOLE design on industrially-relevant cells (>2 Ah pouch cells) and electrode conditions (>3 mAh/cm2 graphite anodes) and demonstrate > 97% and >93% capacity retention after 100 cycles of 4C and 6C fast-charge cycling, respectively, compared to 69% and 59% for unpatterned electrodes under the same conditions. After 600 fast-charge cycles, the capacity retention of the HOLE cells is 91% at 4C and 86% at 6C charge rates. Moreover, the HOLE design allows for cells to access >90% of the total cell capacity during fast charging, providing a pathway towards safe fast-charging of high-energy-density batteries.



中文翻译:

激光图案化的三维石墨阳极架构可实现锂离子电池的高效快速充电

启用可以在不到10分钟的时间内充电的高能量密度锂离子电池,将加快电动汽车的公众接受度。然而,为了获得高能量密度,经常使用厚的电极,其受到运输限制。这导致功率性能和能量密度之间的权衡。在这里,我们演示了激光图案化工艺以生产三维石墨阳极结构。此过程会产生高度有序的激光图案化电极(HOLE),该电极具有穿过阳极厚度的垂直孔道阵列,这些孔道用作快速离子传输的扩散路径。我们将HOLE设计应用于与工业相关的电池(> 2 Ah袋式电池)和电极条件(> 3 mAh / cm 2石墨阳极),分别在100C的4C和6C快速充电循环后显示了> 97%和> 93%的容量保持率,相比之下,在相同条件下未图案化的电极为69%和59%。经过600次快速充电后,HOLE电池在4C时的容量保持率为91%,在6C充电时为86%。此外,HOLE设计允许电池在快速充电期间访问总电池容量的90%以上,从而为高能量密度电池的安全快速充电提供了途径。

更新日期:2020-06-28
down
wechat
bug