当前位置: X-MOL 学术Geothermics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using saline or brackish aquifers as reservoirs for thermal energy storage, with example calculations for direct-use heating in the Portland Basin, Oregon, USA
Geothermics ( IF 3.9 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.geothermics.2020.101877
Erick R. Burns , John Bershaw , Colin F. Williams , Ray Wells , Matt Uddenberg , Darby Scanlon , Trenton Cladouhos , Boz van Houten

Abstract Tools to evaluate reservoir thermal energy storage (RTES; heat storage in slow-moving or stagnant geochemically evolved permeable zones in strata that underlie well-connected regional aquifers) are developed and applied to the Columbia River Basalt Group (CRBG) beneath the Portland Basin, Oregon, USA. The performance of RTES for heat storage and recovery in the Portland Basin is strongly dependent on the operational schedule of heat injection and extraction. We examined the effects of the operational schedule, based on an annual solar hot water supply pattern and a building heating demand model, using heat and fluid flow simulations with SUTRA. We show RTES to be feasible for supply of heating energy for a large combined research/teaching building on the Oregon Health and Science University South Waterfront expansion, an area of planned future development. Initially, heat is consumed to increase the reservoir temperature, and conductive heat loss is high due to high temperature gradients between the reservoir and surrounding rock. Conductive heat loss continues into the future, but the rate of heat loss decreases, and heat recovery efficiency of the RTES system increases over time. Simulations demonstrate the effects of varying heat-delivery rate and temperature on the heat production history of the reservoir. If 100% of building heating needs are to be supplied by combined solar/RTES, then the solar system must be sized to meet building needs plus long-term thermal losses (i.e., conductive losses once the system is heated to pseudo-steady state) from the RTES system. If the solar heating system barely meets these criteria, then during early years, less than 100% of the building demand will be supplied until the reservoir is fully-heated. The duration of supplying less than 100% of building demand can be greatly shortened by pre-heating the reservoir before building heating operations or by adding extra heat from external sources during early years. Analytic solutions are developed to evaluate efficacy and to help design RTES systems (e.g., well-spacing, thermal source sizing, etc.). A map of thermal energy storage capacity is produced for the CRBG beneath the Portland Basin. The simulated building has an annual heat load of ∼1.9 GWh, and the total annual storage capacity of the Portland Basin is estimated to be 43,400 GWh assuming seasonal storage of heat yields water from which 10 °C can be extracted via heat exchange, indicating a tremendous heating capacity of the CRBG.

中文翻译:

使用咸水或半咸水含水层作为热能储存库,举例计算美国俄勒冈州波特兰盆地的直接供热

摘要 开发了用于评估储层热能储存 (RTES;位于连接良好的区域含水层之下的地层中缓慢移动或停滞的地球化学演化渗透带中的储热) 的工具,并应用于波特兰盆地下方的哥伦比亚河玄武岩群 (CRBG) ,俄勒冈州,美国。波特兰盆地储热和回收 RTES 的性能在很大程度上取决于热注入和提取的运行计划。我们根据年度太阳能热水供应模式和建筑供暖需求模型,使用 SUTRA 的热量和流体流动模拟,检查了运营计划的影响。我们证明了 RTES 在为俄勒冈健康与科学大学南滨水区扩建的大型综合研究/教学楼提供热能方面是可行的,未来规划发展的区域。最初,热量被消耗以提高储层温度,并且由于储层和围岩之间的高温梯度,传导热损失很高。传导热损失会持续到未来,但热损失率会降低,并且 RTES 系统的热回收效率会随着时间的推移而增加。模拟显示了不同的热传输速率和温度对储层热生产历史的影响。如果 100% 的建筑供暖需求由太阳能/RTES 组合提供,那么太阳能系统的大小必须满足建筑需求加上长期热损失(即系统加热到伪稳态后的传导损失)来自 RTES 系统。如果太阳能供暖系统勉强满足这些标准,那么在早年,在水库完全加热之前,将供应不到 100% 的建筑需求。通过在建筑物供暖操作之前预热蓄水池或在早期从外部来源添加额外热量,可以大大缩短供应不足 100% 的建筑物需求的持续时间。开发分析解决方案以评估功效并帮助设计 RTES 系统(例如,井距、热源尺寸等)。为波特兰盆地下方的 CRBG 制作了一张热能存储容量图。模拟建筑的年热负荷约为 1.9 GWh,假设季节性储存热量产生的水可以通过热交换提取 10 °C,则波特兰盆地的年总储存容量估计为 43,400 GWh,表明CRBG 的巨大加热能力。
更新日期:2020-11-01
down
wechat
bug