当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and Numerical Studies of Brittle Rock-Like Samples with Internal Open Fractures and Cavities Under Uniaxial Compression
Arabian Journal for Science and Engineering ( IF 2.9 ) Pub Date : 2020-06-28 , DOI: 10.1007/s13369-020-04712-2
Yusong Zhao , Yongtao Gao , Shunchuan Wu

Previous laboratory tests conducted using rock-like samples with 2D through fractures are mostly high-level simplifications of real engineering conditions. Thus, the results from these 2D analyses cannot usually be successfully applied to 3D conditions and real engineering conditions. To study the mechanical properties and failure processes of samples that could highly represent the 3D conditions in the real world, brittle rock-like samples with designed internal open-type fractured structures are prepared for this study using the volume loss method and super absorbent polymer, and following studies included the uniaxial compression tests and discrete element numerical simulations. The results from real tests and simulations proved that the shape, position, and volume of internal open-type fractured structures had an obvious influence on the physical properties and spatial distributions of shear and tensile failures of specimens. Different from the results obtained by former 2D studies, failure surfaces in this work are not parallel with the preset structures, and the main failure faces develop along the diagonal directions of the internal structure. In addition, the tensile failure distribution is controlled by the shape and position of the internal structure, and the shear failure distribution is influenced by the height of the internal structure and the positions of the tensile failure surface. The findings are helpful for explaining the failure characteristics of specimens containing 3D fractured structures.



中文翻译:

单轴压缩下具有内部开裂和腔的脆性岩石样的实验和数值研究

以前使用带有裂缝的二维岩石样样品进行的实验室测试大多是对实际工程条件的简化。因此,这些2D分析的结果通常不能成功地应用于3D条件和实际工程条件。为了研究可以高度代表现实世界中3D条件的样品的力学性能和破坏过程,我们使用体积损失法和高吸收性聚合物制备了具有设计的内部开放式断裂结构的脆性岩石样样品,随后的研究包括单轴压缩试验和离散元数值模拟。实际测试和模拟的结果证明,其形状,位置,内部开放式断裂结构的体积和体积对试样的剪切和拉伸破坏的物理性质和空间分布有明显的影响。与以前的2D研究获得的结果不同,这项工作中的破坏面与预设结构不平行,并且主要破坏面沿内部结构的对角线方向发展。另外,拉伸破坏分布受内部结构的形状和位置控制,剪切破坏分布受内部结构的高度和拉伸破坏表面的位置影响。这些发现有助于解释包含3D断裂结构的标本的破坏特征。与以前的2D研究获得的结果不同,这项工作中的破坏面与预设结构不平行,并且主要破坏面沿内部结构的对角线方向发展。另外,拉伸破坏分布受内部结构的形状和位置控制,剪切破坏分布受内部结构的高度和拉伸破坏表面的位置影响。这些发现有助于解释包含3D断裂结构的标本的破坏特征。与以前的2D研究获得的结果不同,这项工作中的破坏面与预设结构不平行,并且主要破坏面沿内部结构的对角线方向发展。另外,拉伸破坏分布受内部结构的形状和位置控制,剪切破坏分布受内部结构的高度和拉伸破坏表面的位置影响。这些发现有助于解释包含3D断裂结构的标本的破坏特征。拉伸破坏分布受内部结构的形状和位置控制,剪切破坏分布受内部结构的高度和拉伸破坏表面的位置影响。这些发现有助于解释包含3D断裂结构的标本的破坏特征。拉伸破坏分布受内部结构的形状和位置控制,剪切破坏分布受内部结构的高度和拉伸破坏表面的位置影响。这些发现有助于解释包含3D断裂结构的标本的破坏特征。

更新日期:2020-06-28
down
wechat
bug