当前位置: X-MOL 学术Water › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measurement of Total Nitrogen Concentration in Surface Water Using Hyperspectral Band Observation Method
Water ( IF 3.4 ) Pub Date : 2020-06-27 , DOI: 10.3390/w12071842
Changjiang Liu , Fei Zhang , Xiangyu Ge , Xianlong Zhang , Ngai weng Chan , Yaxiao Qi

Nitrogen overload is one of the main reasons for the deterioration of surface water quality. Hence, monitoring nitrogen loadings is vital in maintaining good surface water quality. Increasingly, the use of spectral reflectance to monitor nitrogen concentration in water has shown potentials, but it poses some problems. Therefore, it is necessary to explore new methods of quantitative monitoring of nitrogen concentration in surface water. In this paper, hyperspectral data from surface water in the Ebinur Lake watershed are used to select sensitive bands using spectral transformation, the spectral index, and a coupling of these two methods. The particle swarm optimization support vector machine (PSO-SVM) model, constructed on the basis of sensitive bands, is used quantitatively to estimate the total nitrogen concentration in surface water and subsequently to verify its accuracy. The results show that the bands near 680, 850, and 940 nm can be used as sensitive bands for estimation of the total nitrogen concentration of surface water in arid regions. Compared with the best estimation models constructed by sensitive bands selected using the spectral transformation or the spectral index alone, the best model based on the coupling of these two measures is more accurate (R2 = 0.604, Root Mean Square Error (RMSE) = 1.61 mg/L, Residual Prediction Deviation (RPD) = 2.002). This coupling method leads to a robust, accurate, and strong predictability model, and can contribute to improved quantitative estimation of water quality indexes of rivers in arid regions.

中文翻译:

使用高光谱波段观测法测量地表水中的总氮浓度

氮超载是地表水水质恶化的主要原因之一。因此,监测氮负荷对于保持良好的地表水质量至关重要。越来越多地,使用光谱反射率来监测水中的氮浓度已经显示出潜力,但它也带来了一些问题。因此,有必要探索地表水中氮浓度定量监测的新方法。在本文中,来自 Ebinur 湖流域地表水的高光谱数据用于通过光谱变换、光谱指数以及这两种方法的耦合来选择敏感波段。基于敏感波段构建的粒子群优化支持向量机(PSO-SVM)模型,用于定量估计地表水中的总氮浓度,并随后验证其准确性。结果表明,680、850和940 nm附近的波段可作为估算干旱地区地表水总氮浓度的敏感波段。与仅使用光谱变换或光谱指数选择的敏感波段构建的最佳估计模型相比,基于这两种措施耦合的最佳模型更准确(R2 = 0.604,均方根误差(RMSE)= 1.61 mg /L,残差预测偏差 (RPD) = 2.002)。这种耦合方法产生了一个稳健、准确和强可预测性的模型,有助于改进干旱地区河流水质指标的定量估计。结果表明,680、850和940 nm附近的波段可作为估算干旱地区地表水总氮浓度的敏感波段。与仅使用光谱变换或光谱指数选择的敏感波段构建的最佳估计模型相比,基于这两种措施耦合的最佳模型更准确(R2 = 0.604,均方根误差(RMSE)= 1.61 mg /L,残差预测偏差 (RPD) = 2.002)。这种耦合方法产生了一个稳健、准确和强可预测性的模型,有助于改进干旱地区河流水质指标的定量估计。结果表明,680、850和940 nm附近的波段可作为估算干旱地区地表水总氮浓度的敏感波段。与仅使用光谱变换或光谱指数选择的敏感波段构建的最佳估计模型相比,基于这两种措施耦合的最佳模型更准确(R2 = 0.604,均方根误差(RMSE)= 1.61 mg /L,残差预测偏差 (RPD) = 2.002)。这种耦合方法产生了一个稳健、准确和强可预测性的模型,有助于改进干旱地区河流水质指标的定量估计。与仅使用光谱变换或光谱指数选择的敏感波段构建的最佳估计模型相比,基于这两种措施耦合的最佳模型更准确(R2 = 0.604,均方根误差(RMSE)= 1.61 mg /L,残差预测偏差 (RPD) = 2.002)。这种耦合方法产生了一个稳健、准确和强可预测性的模型,有助于改进干旱地区河流水质指标的定量估计。与仅使用光谱变换或光谱指数选择的敏感波段构建的最佳估计模型相比,基于这两种措施耦合的最佳模型更准确(R2 = 0.604,均方根误差(RMSE)= 1.61 mg /L,残差预测偏差 (RPD) = 2.002)。这种耦合方法产生了一个稳健、准确和强可预测性的模型,有助于改进干旱地区河流水质指标的定量估计。
更新日期:2020-06-27
down
wechat
bug