当前位置: X-MOL 学术Microelectron. Reliab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design guideline on board-level thermomechanical reliability of 2.5D package
Microelectronics Reliability ( IF 1.6 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.microrel.2020.113701
Shuai Shao , Yuling Niu , Jing Wang , Ruiyang Liu , Seungbae Park , Hohyung Lee , Laurene Yip , Gamal Refai-Ahmed

Abstract A vast range of electronics products have utilized 2.5D packages for better performance and miniaturization. As multi-level assembly technologies are getting mature, 2.5D packaging technology becomes affordable. In this work, design guideline for board-level reliability of a 2.5D package was provided with respect to accelerated thermal cycling (ATC) and power cycling (PC). Finite element models were built and validated step-by-step by warpage measurement. Solder fatigue life in power cycling was investigated with temperature mapping technique merged into the process of scripting, which conducts load transfers from computational fluid dynamics (CFD) simulation to finite element analysis (FEA). ATC test was conducted with solder joint failure analysis. Fatigue life projection model was determined by correlation between tested life data and simulation results. Parametric studies regarding geometry factors and material properties were performed including PCB, substrate, thermal interface material (TIM) and lid adhesive, to give design suggestions to improve board-level thermal reliability. It is found that CTE mismatch between the substrate and the PCB is the major factor affecting board-level reliability in accelerated thermal cycling. Maximum junction temperature of a 2.5D FPGA package is dependent on application scenarios and working environment. Designed maximum junction temperature and applied heatsink clamping force have considerable influences on board-level reliability.

中文翻译:

2.5D封装板级热机械可靠性设计指南

摘要 大量电子产品采用 2.5D 封装以实现更好的性能和小型化。随着多级组装技术日趋成熟,2.5D 封装技术变得可负担。在这项工作中,针对加速热循环 (ATC) 和功率循环 (PC) 提供了 2.5D 封装的板级可靠性设计指南。通过翘曲测量逐步建立和验证有限元模型。将温度映射技术与脚本过程相结合,研究了功率循环中的焊料疲劳寿命,该过程将载荷从计算流体动力学 (CFD) 模拟转移到有限元分析 (FEA)。ATC 测试是通过焊点失效分析进行的。疲劳寿命预测模型由测试寿命数据和模拟结果之间的相关性确定。进行了有关几何因素和材料特性的参数研究,包括 PCB、基板、热界面材料 (TIM) 和盖子粘合剂,以提供设计建议以提高板级热可靠性。发现基板和 PCB 之间的 CTE 失配是影响加速热循环中板级可靠性的主要因素。2.5D FPGA 封装的最大结温取决于应用场景和工作环境。设计的最高结温和施加的散热器夹紧力对板级可靠性有相当大的影响。基板、热界面材料 (TIM) 和盖子粘合剂,提供设计建议以提高板级热可靠性。发现基板和 PCB 之间的 CTE 失配是影响加速热循环中板级可靠性的主要因素。2.5D FPGA 封装的最大结温取决于应用场景和工作环境。设计的最高结温和施加的散热器夹紧力对板级可靠性有相当大的影响。基板、热界面材料 (TIM) 和盖子粘合剂,提供设计建议以提高板级热可靠性。发现基板和 PCB 之间的 CTE 失配是影响加速热循环中板级可靠性的主要因素。2.5D FPGA 封装的最大结温取决于应用场景和工作环境。设计的最高结温和施加的散热器夹紧力对板级可靠性有相当大的影响。5D FPGA 封装取决于应用场景和工作环境。设计的最高结温和施加的散热器夹紧力对板级可靠性有相当大的影响。5D FPGA 封装取决于应用场景和工作环境。设计的最高结温和施加的散热器夹紧力对板级可靠性有相当大的影响。
更新日期:2020-08-01
down
wechat
bug