当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Handling CO2 sorption mechanism in PIL@IL composites
Journal of CO2 Utilization ( IF 7.7 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.jcou.2020.101225
Marcileia Zanatta , Mónica Lopes , Eurico J. Cabrita , Carlos E.S. Bernardes , Marta C. Corvo

The mitigation of climate change effects requires the use of alternative materials and technologies to control CO2 atmospheric levels through its capture, storage and use. In this field, the current work presents the evaluation of two poly(ionic liquid)s (PILs) (poly-1-vinyl-3-ethylimidazolium acetate and hydroxide) combined with free ionic liquid (IL) 1-butyl-3-methylimidolium acetate (BMI·OAc) for CO2 capture. The sorption capacity of PIL@IL composites was evaluated under 20 bar of CO2 at 298 K. Nuclear Magnetic Resonance (NMR) spectroscopy allowed quantification of CO2 sorption (physisorption and/or chemisorption) and in situ study of the PIL−CO2 interaction mechanism. NMR in combination with Molecular Dynamics (MD) simulations suggested a 3D organization of PIL composites, maintaining a similar organization to ILs. Also, the use of aqueous solutions of PIL@IL composites was tested, identifying the optimum conditions for water activation (intrinsic water trapped inside IL structure) for chemisorption. As our main contribution, we demonstrate the possibility to control the sorption pathway towards CO2 physisorption, or CO2 conversion (chemisorption) through carbonation (HCO3/CO32-) according to the PIL/IL ratio, ions structure and water amount. The use of PIL/IL composites is a promising advance for further CO2 reuse approaching a biomimetic carbonation process.



中文翻译:

处理PIL @ IL复合材料中的CO2吸附机理

减轻气候变化影响要求使用替代材料和技术,以通过其捕获,储存和使用来控制CO 2大气水平。在这一领域,目前的工作是结合游离离子液体(IL)1-丁基-3-甲基咪唑鎓对两种聚离子液体(PIL)(聚-1-乙烯基-3-乙基咪唑乙酸盐和氢氧化物)进行评估乙酸盐(BMI·OAc)用于捕获CO 2。在20 bar CO 2和298 K下评估PIL ​​@ IL复合材料的吸附能力。核磁共振(NMR)光谱可以量化CO 2的吸附(物理吸附和/或化学吸附)并进行PIL-CO 2的原位研究。互动机制。NMR结合分子动力学(MD)模拟表明PIL复合材料的3D组织,与IL保持相似的组织。此外,还测试了PIL @ IL复合材料水溶液的使用情况,确定了用于化学吸附的水活化(固有水被困在IL结构内部)的最佳条件。作为我们的主要贡献,我们证明,以控制向CO吸附通路的可能性2物理吸附,或CO 2通过碳酸化转化(化学吸附)(HCO 3 - / CO 3 2-)根据PIL / IL比,离子结构和水量。PIL / IL复合材料的使用对于进一步CO 2而言是一个有希望的进步 仿生碳酸化过程中的重复利用。

更新日期:2020-06-27
down
wechat
bug