当前位置: X-MOL 学术Microsyst. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and development of an efficient fluid mixing for 3D printed lab-on-a-chip
Microsystem Technologies ( IF 2.1 ) Pub Date : 2020-03-06 , DOI: 10.1007/s00542-020-04787-9
Anurag Agarwal , Asif Salahuddin , Hualong Wang , Mohammed Jalal Ahamed

In this paper, we present elaborate study of design parameters of hybrid microfluidic mixer through numerical approach using finite element method and experimental studies to improve mixing efficiency in 3D printed lab on a chip. We investigated the change in mixing efficiency by varying passive parameters like intersection angle of the channel inlet V-leg, barrier shape, barrier orientation and the contours of the wall surface as well as the active parameters such as electric field, frequency and number of electrodes to change the electroosmotic flow-induced mixing behavior inside the mixing zone. The optimum design is then experimentally verified by using a 3D additive manufacturing printing technique to fabricate the mixing device. Analysis of Reynolds number versus mixing index indicates the efficiency to be better at lower flow rate while using electroosmotic mixing as well. The study of non-dimensional Peclet number reveals that four electrodes per side on the channel wall yield the maximum mixing within the operating range of this device. Putting it all together, the mixing efficiency reaches close to 50% when the barriers are staggered, waviness is absent in wall surface, intersection angle of the two inlets V-leg is close to 50° and the inlet flow rate is low. The optimal hybrid mixer design and implementation presented in this paper can enable further development of next generation 3D printed lab-on-chip devices.



中文翻译:

设计和开发用于3D打印的芯片实验室的高效流体混合

在本文中,我们通过有限元方法的数值方法,对混合微流体混合器的设计参数进行了详尽的研究,并通过实验研究来提高芯片上3D打印实验室中的混合效率。我们通过改变被动参数来研究混合效率的变化,例如通道入口V形腿的相交角,阻挡层形状,阻挡层取向和壁表面轮廓以及诸如电场,频率和电极数量之类的主动参数改变混合区内电渗流引起的混合行为。然后,通过使用3D增材制造打印技术制造混合设备,对最佳设计进行实验验证。雷诺数对混合指数的分析表明,在同样使用电渗混合的同时,在较低流速下效率会更高。对无量纲Peclet数的研究表明,通道壁上每侧四个电极在此设备的工作范围内产生最大混合。放在一起,当障碍物交错时,混合效率达到接近50%,壁面不存在波纹,两个入口V形支腿的交角接近50°,入口流速低。本文提出的最佳混合混合器设计和实现可以实现下一代3D打印芯片实验室设备的进一步开发。对无量纲Peclet数的研究表明,通道壁上每侧四个电极在该设备的工作范围内产生最大混合。放在一起,当障碍物交错时,混合效率达到接近50%,壁面不存在波纹,两个入口V形支腿的交角接近50°,入口流速低。本文提出的最佳混合混合器设计和实现可以实现下一代3D打印芯片实验室设备的进一步开发。对无量纲Peclet数的研究表明,通道壁上每侧四个电极在该设备的工作范围内产生最大混合。放在一起,当障碍物交错时,混合效率达到接近50%,壁面不存在波纹,两个入口V形支腿的交角接近50°,入口流量低。本文提出的最佳混合混合器设计和实现可以实现下一代3D打印芯片实验室设备的进一步开发。

更新日期:2020-03-06
down
wechat
bug