当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of a push–pull system in g-C3N4 for efficient photocatalytic hydrogen evolution under visible light
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2020-06-26 , DOI: 10.1039/c9ta13513h
Cheng-Qun Xu 1, 2, 3, 4, 5 , Wei-De Zhang 6, 7, 8, 9 , Kenzo Deguchi 2, 3, 4, 10 , Shinobu Ohki 2, 3, 4, 10 , Tadashi Shimizu 2, 3, 4, 10 , Renzhi Ma 1, 2, 3, 4 , Takayoshi Sasaki 1, 2, 3, 4
Affiliation  

A facile “one-pot” method to improve the utilization of visible light using organic chemistry protocols is reported. The incorporation of acetylacetone (acac) into the conjugated polymer matrix g-C3N4 derived from urea (UCN) can tune the electronic structure effectively. As a result, the modified g-C3N4 showed a narrowed band gap and enhanced charge carrier migration and separation. Meanwhile, the high utilization ratio of visible light leads to efficient photocatalytic hydrogen evolution, and an apparent quantum efficiency (AQE) as high as 18.8% at 450 nm is achieved, exceeding that of most of the previously reported doped g-C3N4 photocatalysts. Furthermore, density functional theory (DFT) calculations certify the proposed structure of g-C3N4 by incorporation of acetylacetone and explain the enhanced ability to harvest photons due to the introduction of an electron push–pull system into the CN network. In addition, the incorporation of acac into g-C3N4 is also found to be applicable to other precursors (dicyandiamide and thiourea) through similar synthetic routes. Optical absorption under visible light is extended similarly, highlighting the universality of the current strategy. The work provides a route of organic chemistry to design and synthesize functional g-C3N4 with high photocatalytic performance.

中文翻译:

在g-C3N4中构建推挽系统,以在可见光下有效地光催化制氢

报道了一种使用有机化学方案提高可见光利用率的简便“一锅法”。将乙酰丙酮(acac)掺入衍生自尿素(UCN)的共轭聚合物基质gC 3 N 4中可以有效地调节电子结构。结果,改性的gC 3 N 4显示出窄的带隙和增强的电荷载流子迁移和分离。同时,可见光的高利用率导致有效的光催化氢释放,并且在450 nm处的表观量子效率(AQE)高达18.8%,超过了大多数先前报道的掺杂gC 3 N 4。光催化剂。此外,密度泛函理论(DFT)计算通过掺入乙酰丙酮来证明gC 3 N 4的建议结构,并解释了由于将电子推挽系统引入CN网络而提高了收集光子的能力。另外,还发现通过类似的合成途径将acac掺入gC 3 N 4中也可应用于其他前体(双氰胺和硫脲)。可见光下的光吸收以类似的方式扩展,突出了当前策略的普遍性。这项工作为有机化学设计和合成具有高光催化性能的功能性gC 3 N 4提供了一条途径。
更新日期:2020-07-07
down
wechat
bug