当前位置: X-MOL 学术Analyst › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function.
Analyst ( IF 4.2 ) Pub Date : 2020-06-26 , DOI: 10.1039/d0an00633e
Rebecca L Pinals 1 , Linda Chio , Francis Ledesma , Markita P Landry
Affiliation  

Unpredictable and uncontrollable protein adsorption on nanoparticles remains a considerable challenge to achieving effective application of nanotechnologies within biological environments. Nevertheless, engineered nanoparticles offer unprecedented functionality and control in probing and altering biological systems. In this review, we highlight recent advances in harnessing the “protein corona” formed on nanoparticles as a handle to tune functional properties of the protein–nanoparticle complex. Towards this end, we first review nanoparticle properties that influence protein adsorption and design strategies to facilitate selective corona formation, with the corresponding characterization techniques. We next focus on literature detailing corona-mediated functionalities, including stealth to avoid recognition and sequestration while in circulation, targeting of predetermined in vivo locations, and controlled activation once localized to the intended biological compartment. We conclude with a discussion of biocompatibility outcomes for these protein–nanoparticle complexes applied in vivo. While formation of the nanoparticle–corona complex may impede our control over its use for the projected nanobiotechnology application, it concurrently presents an opportunity to create improved protein–nanoparticle architectures by exploiting natural or guiding selective protein adsorption to the nanoparticle surface.

中文翻译:

纳米生物界面工程:利用蛋白质电晕进行纳米颗粒设计和功能。

纳米粒子上不可预测和不可控制的蛋白质吸附仍然是实现纳米技术在生物环境中有效应用的巨大挑战。尽管如此,工程纳米粒子在探测和改变生物系统方面提供了前所未有的功能和控制。在这篇综述中,我们重点介绍了利用纳米粒子上形成的“蛋白质冠”作为调节蛋白质-纳米粒子复合物功能特性的手柄的最新进展。为此,我们首先回顾影响蛋白质吸附的纳米颗粒特性以及促进选择性电晕形成的设计策略,以及相应的表征技术。接下来,我们重点关注详细介绍电晕介导功能的文献,包括在循环时避免识别和隔离的隐身性、靶向预定的体内位置,以及一旦定位到预期生物区室的受控激活。我们最后讨论了这些体内应用的蛋白质-纳米颗粒复合物的生物相容性结果。虽然纳米颗粒-电晕复合物的形成可能会妨碍我们对其在预计的纳米生物技术应用中的使用进行控制,但它同时提供了通过利用自然或引导选择性蛋白质吸附到纳米颗粒表面来创建改进的蛋白质-纳米颗粒结构的机会。
更新日期:2020-07-30
down
wechat
bug