当前位置: X-MOL 学术Soft Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tendon-Driven Jamming Mechanism for Configurable Variable Stiffness
Soft Robotics ( IF 7.9 ) Pub Date : 2021-02-15 , DOI: 10.1089/soro.2019.0080
Jaehyeok Choi 1, 2 , Dae-Young Lee 1, 2, 3, 4 , Jun-Hyeok Eo 5 , Yong-Jai Park 1, 5 , Kyu-Jin Cho 1, 2, 6
Affiliation  

Stiffness transition of a soft continuum body is an essential feature for dexterous interaction with an unstructured environment. Softness ensures safe interaction, whereas rigidness generates high force for movement or manipulation. Vacuum-based granular jamming is a widely used technique for on-line stiffness transition because of its high reconfigurability and intuitive driving method. However, vacuum driving method produces limited force levels, and the heavy weight and bulky size are unfavorable for portable applications. In this work, we propose a tendon-driven jamming mechanism for configurable variable stiffness. Compared with a vacuum system, an electric motor-tendon drive system has the benefits of force, bandwidth, size, and weight, but has different force characteristics for distribution, directionality, and transmissibility. In this study, a long snake-like shape is chosen instead of a lump shape for compatibility with tendon-drive characteristics. The snake-like shape is likely to cause buckling under the tendon force as the length increases, making the system extremely unstable. Implanting skeletal disk nodes in the structure is our solution to the buckling phenomenon by maintaining the tendon path in the desired position and for distributing the force evenly, thereby achieving stable stiffness transition capabilities for long free-curved shapes. As a proof of concept, a soft wearable device for wrist support is presented using the proposed variable stiffness mechanism. The weight of the device is 184 g, including the actuators, and it can support 2 kgf. Furthermore, the stiffness transition is completed within 2 s, thus achieving quick responses.

中文翻译:

用于可配置可变刚度的肌腱驱动干扰机制

软连续体的刚度转变是与非结构化环境进行灵巧交互的基本特征。柔软性确保了安全的交互,而刚性则为运动或操纵产生了强大的力量。基于真空的颗粒干扰技术因其高可重构性和直观的驱动方法而被广泛用于在线刚度转换。然而,真空驱动方法产生的力水平有限,而且重量大、体积大,不利于便携式应用。在这项工作中,我们提出了一种用于可配置可变刚度的肌腱驱动干扰机制。与真空系统相比,电动机-肌腱驱动系统具有力、带宽、尺寸和重量等优点,但在分布、方向性和可传递性方面具有不同的力特性。在这项研究中,为了与肌腱驱动特性兼容,选择了长蛇形而不是块状。随着长度的增加,蛇形形状很可能在肌腱力的作用下造成屈曲,使系统极不稳定。在结构中植入骨架盘节点是我们解决屈曲现象的方法,通过将肌腱路径保持在所需位置并均匀分布力,从而实现长自由弯曲形状的稳定刚度过渡能力。作为概念验证,使用所提出的可变刚度机制提出了一种用于腕部支撑的柔软可穿戴设备。该设备的重量为 184 g,包括执行器,可支撑 2 kgf。此外,刚度过渡在 2 秒内完成,从而实现快速响应。为了与肌腱驱动特性兼容,选择了长蛇形而不是块状。随着长度的增加,蛇形形状很可能在肌腱力的作用下造成屈曲,使系统极不稳定。在结构中植入骨架盘节点是我们解决屈曲现象的方法,通过将肌腱路径保持在所需位置并均匀分布力,从而实现长自由弯曲形状的稳定刚度过渡能力。作为概念验证,使用所提出的可变刚度机制提出了一种用于腕部支撑的柔软可穿戴设备。该设备的重量为 184 g,包括执行器,可支撑 2 kgf。此外,刚度过渡在 2 秒内完成,从而实现快速响应。为了与肌腱驱动特性兼容,选择了长蛇形而不是块状。随着长度的增加,蛇形形状很可能在肌腱力的作用下造成屈曲,使系统极不稳定。在结构中植入骨架盘节点是我们解决屈曲现象的方法,通过将肌腱路径保持在所需位置并均匀分布力,从而实现长自由弯曲形状的稳定刚度过渡能力。作为概念验证,使用所提出的可变刚度机制提出了一种用于腕部支撑的柔软可穿戴设备。该设备的重量为 184 g,包括执行器,可支撑 2 kgf。此外,刚度过渡在 2 秒内完成,从而实现快速响应。
更新日期:2021-02-19
down
wechat
bug