当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered Creation of Periodic Giant, Nonuniform Strains in MoS2 Monolayers
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2020-06-25 , DOI: 10.1002/admi.202000621
Elena Blundo 1 , Cinzia Di Giorgio 2, 3 , Giorgio Pettinari 4 , Tanju Yildirim 5, 6 , Marco Felici 1 , Yuerui Lu 6 , Fabrizio Bobba 2, 3 , Antonio Polimeni 1
Affiliation  

The realization of ordered strain fields in 2D crystals is an intriguing perspective in many respects, including the instauration of novel transport regimes and enhanced device performances. However, the current straining techniques hardly allow to reach strains higher than ≈3% and in most cases there is no control over the strain distribution. In this work, a method is demonstrated to subject micrometric regions of atomically thin molybdenum disulfide (MoS2) to giant strains with the desired ordering. Selective hydrogen‐irradiation of bulk flakes allows the creation of arrays of size/position‐controlled monolayer domes containing pressurized hydrogen. However, the gas pressure is ruled by energy minimization, limiting the extent and geometry of the mechanical deformation of the 2D membrane. Here, a protocol is developed to create a mechanical constraint, that alters remarkably the morphology of the domes, otherwise subject to universal scaling laws, as demonstrated by atomic force microscopy. This enables the realization of unprecedented periodic configurations of large strain gradients—estimated by numerical simulations—with the highest strains being close to the rupture critical values (>10%). The creation of such high strains is confirmed by Raman experiments. The method proposed here represents an important step toward the strain engineering of 2D crystals.

中文翻译:

MoS2单层中周期性巨型,非均匀菌株的工程创造

2D晶体中有序应变场的实现在许多方面都是令人着迷的观点,包括新颖传输方式的恢复和增强的器件性能。但是,当前的应变技术几乎不允许达到高于≈3%的应变,并且在大多数情况下,无法控制应变分布。在这项工作中,演示了一种对原子级薄的二硫化钼(MoS 2)到具有所需顺序的巨型菌株。散装薄片的选择性氢辐照允许创建包含加压氢的大小/位置控制的单层圆顶阵列。但是,气压受能量最小化的限制,从而限制了2D膜机械变形的程度和几何形状。在这里,开发了一种协议来创建机械约束,该约束会显着改变圆顶的形态,否则会受到通用缩放定律的影响,如原子力显微镜所证明的那样。这可以实现大应变梯度的空前周期性配置(通过数值模拟进行估算),其中最高应变接近破裂临界值(> 10%)。通过拉曼实验证实了这种高菌株的产生。
更新日期:2020-06-25
down
wechat
bug