当前位置: X-MOL 学术Int. J. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of assembling method and force on the performance of proton‐exchange membrane fuel cells with metal foam flow field
International Journal of Energy Research ( IF 4.6 ) Pub Date : 2020-06-25 , DOI: 10.1002/er.5611
Li‐Fang Weng, Jhe‐Wei Jhuang, Mallikarjun Bhavanari, Kan‐Rong Lee, Yu‐Hsien Lai, Chung‐Jen Tseng

Recently, highly porous metal foams have been used to replace the traditional open‐flow channels to improve gas transport and distribution in the cells. Deformation of flow plate, gas diffusion layer (GDL), and metal foam may occur during assembling. When the cell size is small, the deformation may not be significant. For large area cells, the deformation may become significant to affect the cell performance. In this study, an assembling device that is capable of applying uniform clamping force is built to facilitate fuel cell assembling and alleviate the deformation. A compressing plate that is the same size of the active area is used to apply uniform clamping force before surrounding bolts are fastened. Therefore, bending of the flow plate and deformation of GDL and metal foam can be minimized. Effects of the clamping force on the microstructures of GDL and metal foam, various resistances, pressure drops, and cell performance are investigated. Distribution of the contact pressure between metal foam and GDL is measured by using pressure sensitive films. Field‐emission scanning electron microscope is used to observe the microstructures. Electrochemical impedance spectroscopy analysis is used measure resistances. The fuel cell performance is measured by using a fuel cell test system. For the cell design used in this study, the optimum clamping force is found to be 200 kgf. Using this optimum clamping force, the cell performance can be enhanced by 50%, as compared with that of the cell assembled without using clamping plates. With appropriate clamping force, the compression force distribution across the entire cell area can approach uniform. This enables uniform flow distribution and reduces mass transfer resistance. Good contact between GDL and metal foam also lowers the interface resistance. All these factors contribute to the enhanced cell performance.

中文翻译:

组装方法和作用力对带有金属泡沫流场的质子交换膜燃料电池性能的影响

最近,高度多孔的金属泡沫已被用来代替传统的开放流道,以改善气体在细胞中的传输和分布。在组装过程中可能会发生流板,气体扩散层(GDL)和金属泡沫的变形。当孔尺寸小时,变形可能不明显。对于大面积电池,变形可能会影响电池性能。在这项研究中,构建了能够施加均匀夹紧力的组装装置,以促进燃料电池的组装并减轻变形。在固定周围的螺栓之前,使用与作用区域大小相同的压缩板施加均匀的夹紧力。因此,可以最小化流板的弯曲以及GDL和金属泡沫的变形。研究了夹持力对GDL和金属泡沫微结构,各种电阻,压降和泡孔性能的影响。通过使用压敏膜来测量金属泡沫和GDL之间的接触压力的分布。场发射扫描电子显微镜用于观察微观结构。电化学阻抗谱分析用于测量电阻。通过使用燃料电池测试系统来测量燃料电池性能。对于本研究中使用的电池设计,发现最佳夹紧力为200 kgf。与不使用夹板组装的电池相比,使用这种最佳夹紧力,电池性能可以提高50%。利用适当的夹紧力,整个电池区域上的压缩力分布可以接近均匀。这样可以实现均匀的流量分配并降低传质阻力。GDL与金属泡沫之间的良好接触也会降低界面电阻。所有这些因素都有助于增强电池性能。
更新日期:2020-06-25
down
wechat
bug