当前位置: X-MOL 学术Fuel Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Study of Three Channel Designs with Model Comparison in a PEM Fuel Cell
Fuel Cells ( IF 2.8 ) Pub Date : 2020-06-25 , DOI: 10.1002/fuce.202000002
F. Mojica 1 , Md. A. Rahman 1 , J. M. Mora 2 , J. D. Ocon 2, 3 , P.‐Y. A. Chuang 1
Affiliation  

The flow field is an integral part of a proton exchange membrane fuel cell. In this work, three flow‐field designs, including straight parallel, multiple channel serpentine, and single channel serpentine, are studied systematically to investigate their effects on fuel cell performance. To evaluate the characteristics of each design, relative humidity and flow rate are parametrically adjusted to evaluate performance experimentally. A finite element‐based 3D steady state, single phase COMSOL computational model is employed to analyze reactant distribution and fuel cell performance. The single channel serpentine exhibits the best performance under the greatest variety of operating conditions, but also experiences the highest inlet‐outlet pressure differentials. This study shows that parallel channel design has more evenly distributed reactant concentration, but is prone to liquid water accumulation, which requires high flow rate to remain stable operation under wet conditions. In summary, the multiple channel serpentine design can provide a reasonable balance between pressure drop and flow distribution with robust fuel cell operation.

中文翻译:

PEM燃料电池中三通道设计与模型比较的实验研究

流场是质子交换膜燃料电池的组成部分。在这项工作中,系统地研究了三种流场设计,包括直并联,多通道蛇形和单通道蛇形,以研究它们对燃料电池性能的影响。为了评估每种设计的特性,需要对相对湿度和流速进行参数调整以通过实验评估性能。基于有限元的3D稳态单相COMSOL计算模型用于分析反应物分布和燃料电池性能。单通道蛇形管在各种工作条件下均表现出最佳性能,但其进出口压力差也最高。这项研究表明,平行通道设计具有更均匀分布的反应物浓度,但是易于产生液态水积聚,这需要高流速才能在潮湿条件下保持稳定运行。总之,多通道蛇形设计可以在燃料电池强劲运行的情况下在压降和流量分布之间提供合理的平衡。
更新日期:2020-06-25
down
wechat
bug