当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties
Progress in Materials Science ( IF 37.4 ) Pub Date : 2020-06-25 , DOI: 10.1016/j.pmatsci.2020.100709
Praveen Sathiyamoorthi , Hyoung Seop Kim

Engineering metallic materials are an essential class of materials for a variety of industrial applications due to their competitive mechanical properties, especially strength and ductility. Metallic materials with excellent mechanical properties are highly sought-after as engineering materials for various applications considering safety, environmental, and economic requirements. Thus, the development of high-performance alloys with high strength and high ductility is an unfading research topic for material scientists. The strength enhancement in metallic materials by conventional strengthening mechanisms always leads to a reduction in ductility, which is often referred to as strength-ductility trade-off. In recent decades, novel approaches to enhance strength-ductility synergy through heterogeneous microstructures, such as gradient, harmonic, lamellar, bimodal, hierarchical nanostructures, etc., have been proven to be effective in overcoming strength-ductility trade-off. However, the alloy design concept of conventional alloys limits the exploration of new alloys with good strength-ductility synergy even through heterogeneous microstructures. The discovery of a new alloy design concept based on multi-principal elements, widely known as high entropy alloys, opens up a vast compositional space and offers wider possibilities to find numerous new alloys with remarkable properties. This review article presents an overview of the mechanical behavior of high entropy alloys with heterogeneous microstructures that reconcile the strength-ductility synergy.



中文翻译:

具有异质微观结构的高熵合金:加工和机械性能

工程金属材料由于其具有竞争力的机械性能,尤其是强度和延展性,是各种工业应用中必不可少的一类材料。考虑到安全、环境和经济要求,具有优异机械性能的金属材料作为各种应用的工程材料备受追捧。因此,开发具有高强度和高延展性的高性能合金是材料科学家永不褪色的研究课题。通过传统强化机制增强金属材料的强度总是导致延展性降低,这通常被称为强度-延展性权衡。近几十年来,通过异质微观结构(如梯度、谐波、层状、双峰、分层纳米结构等已被证明可有效克服强度-延展性的权衡。然而,传统合金的合金设计理念限制了对具有良好强度-延展协同作用的新型合金的探索,即使是通过异质微观结构。基于多主要元素的新合金设计概念的发现,即众所周知的高熵合金,开辟了广阔的成分空间,并为寻找众多具有卓越性能的新合金提供了更广泛的可能性。这篇综述文章概述了具有协调强度-延展协同作用的异质微观结构的高熵合金的机械行为。传统合金的合金设计理念限制了对具有良好强度-延展性协同作用的新型合金的探索,即使是通过异质微观结构。基于多主要元素的新合金设计概念的发现,即众所周知的高熵合金,开辟了广阔的成分空间,并为寻找众多具有卓越性能的新合金提供了更广泛的可能性。这篇综述文章概述了具有协调强度-延展协同作用的异质微观结构的高熵合金的机械行为。传统合金的合金设计理念限制了对具有良好强度-延展性协同作用的新型合金的探索,即使是通过异质微观结构。基于多主要元素的新合金设计概念的发现,即众所周知的高熵合金,开辟了广阔的成分空间,并为寻找众多具有卓越性能的新合金提供了更广泛的可能性。这篇综述文章概述了具有协调强度-延展协同作用的异质微观结构的高熵合金的机械行为。开辟了广阔的成分空间,并提供了更广泛的可能性,可以找到许多具有卓越性能的新合金。这篇综述文章概述了具有协调强度-延展协同作用的异质微观结构的高熵合金的机械行为。开辟了广阔的成分空间,并提供了更广泛的可能性,可以找到许多具有卓越性能的新合金。这篇综述文章概述了具有协调强度-延展协同作用的异质微观结构的高熵合金的机械行为。

更新日期:2020-06-25
down
wechat
bug