当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The sigmoidal strain hardening behaviour of a metastable AISI 301LN austenitic stainless steel as a function of temperature
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2020-06-25 , DOI: 10.1016/j.msea.2020.139741
Tulani W. Mukarati , Roelf J. Mostert , Charles W. Siyasiya

Mathematical relationships linking flow stress to the deformation temperature have been developed describing the strain hardening behaviour of AISI 301LN metastable austenite steel at temperatures up to 75 °C. Sigmoidal flow stress relationships were dominant at most temperatures but reduced to Hollomon-type equations at a temperature of 90 °C and above. The observed sigmoidal behaviour was shown to be driven by pronounced strain-induced martensitic transformation, while the change to a Hollomon – type behaviour at the higher temperatures is believed to be due to absence of significant amounts of strain-induced martensite at the higher temperatures. With increasing deformation temperature, the deformation mechanism is shown to be a mixture of Transformation Induced Plasticity (TRIP) and Twinning Induced Plasticity (TWIP), with the latter mechanism being dominant at high temperatures as indicated by Stacking Fault Energy (SFE) calculations carried out as a function of temperature. The variation of the instantaneous strain-hardening exponent, ni as a function of applied strain and the influence on the strength coefficient, K, as a function of temperature have been studied for the full temperature range and interpreted.



中文翻译:

亚稳态AISI 301LN奥氏体不锈钢的S形应变硬化行为与温度的关系

已经建立了将流动应力与变形温度联系起来的数学关系,该关系描述了AISI 301LN亚稳奥氏体钢在最高75°C的温度下的应变硬化行为。在大多数温度下,S型流应力关系占主导地位,但在90°C和更高的温度下,简化为Hollomon型方程。观察到的S形行为是由明显的应变诱发的马氏体相变驱动的,而在较高温度下转变为霍洛蒙型的行为被认为是由于在较高温度下不存在大量的应变诱发的马氏体。随着变形温度的升高,变形机制显示为相变诱导可塑性(TRIP)和孪生诱导可塑性(TWIP)的混合物,后一种机制在高温下占主导地位,如堆垛层错能量(SFE)计算所示,该机制是温度的函数。瞬时应变硬化指数n的变化在整个温度范围内研究了i作为外加应变的函数以及对强度系数K随温度的影响的函数,并对其进行了解释。

更新日期:2020-07-05
down
wechat
bug