当前位置: X-MOL 学术Biophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron-Oscillatory Excited Complexes in Enzymatic Reactions
Biophysics Pub Date : 2020-03-01 , DOI: 10.1134/s0006350920020268
N. L. Vekshin

Abstract —This paper reports an analysis of the energy profile of enzymatic catalysis. The conclusion is made that using the phenomenological Arrhenius equation and the equilibrium thermodynamic parameters of Eyring’s activated complex theory it appears impossible to adequately explain the mechanism of catalysis. In real enzyme–substrate complexes the Maxwell–Boltzmann energy distribution is dramatically violated at all stages of catalysis, which is equivalent to an instantaneous increase in the local nonequilibrium temperature. Enzymatic stages are neither equilibrium nor isothermal. Substrate adsorption onto the enzyme leads (due to charge or dipole neutralization) to a large amount of energy being locally released that is sufficient to break a covalent bond or to enable electron transfer with the formation of a transition electron-oscillatory excited complex. It is the energy of this complex that provides the normal progression of subsequent, slower, stages (rearrangement or transfer of atoms and product desorption). Enzymatic reactions proceed through the formation of nonequilibrium electron-oscillatory excited complexes, whose kinetics do not obey Eyring’s thermodynamics.

中文翻译:

酶促反应中的电子振荡激发复合物

摘要——本文报告了酶催化能量分布的分析。得出的结论是,使用现象学 Arrhenius 方程和 Eyring 活化络合物理论的平衡热力学参数似乎不可能充分解释催化机理。在真正的酶-底物复合物中,麦克斯韦-玻尔兹曼能量分布在催化的所有阶段都显着违反,这相当于局部非平衡温度的瞬时增加。酶促阶段既不是平衡也不是等温的。底物吸附到酶上导致(由于电荷或偶极子中和)局部释放大量能量,足以破坏共价键或通过形成跃迁电子振荡激发复合物实现电子转移。正是这种复合体的能量提供了随后的、较慢的阶段(原子的重排或转移和产物解吸)的正常进展。酶促反应通过非平衡电子振荡激发复合物的形成进行,其动力学不服从艾林热力学。
更新日期:2020-03-01
down
wechat
bug