当前位置: X-MOL 学术Int. J. Thermophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal Conductivity Enhancement via Synthesis Produces a New Hybrid Mixture Composed of Copper Oxide and Multi-walled Carbon Nanotube Dispersed in Water: Experimental Characterization and Artificial Neural Network Modeling
International Journal of Thermophysics ( IF 2.2 ) Pub Date : 2020-06-25 , DOI: 10.1007/s10765-020-02702-y
Aliakbar Karimipour , Omid Malekahmadi , Arash Karimipour , Mohamad Shahgholi , Zhixiong Li

Nanofluid is a solid–fluid mixture. By using one solid nanoparticle or one fluid, mono-nanofluid (MN) forms, and by using two solid nanoparticles (NPs) or two fluids, hybrid-nanofluid (HN) forms. For this study, for MN, copper oxide (CuO) and for HN, two solids, which are CuO and multi-walled carbon nanotube (MWCNT) were dispersed in base fluid which is water. After nanofluid preparation, thermal conductivity was measured, and the achievements were numerically modeled. After that, XRD–EDX were performed for the phase-structural analysis. Then, FESEM was examined for NPs-microstructural study. Thermal conductivity (TC) of MN and HN were investigated at 0.2 % to 1.0 % volume fractions (Vf) in 25 °C to 50 °C temperature (T) ranges. Thermal conductivity enhancements of 19.16 % and 37.05 % were seen at the utmost Vf and T for mono-nanofluid and hybrid-nanofluid, respectively. New correlations have been presented with R 2 = 0.9, and also Artificial Neural Network (ANN) has been done with R 2 = 0.999. For the presented correlation, 0.86 %, and 0.51 % deviations, and for the trained model, 0.41 % and 0.51 % deviations were estimated for mono-nanofluid and hybrid-nanofluid, respectively. As a final result, by adding MWCNT to CuO–H 2 O mixture, thermal conductivity is raised by 17.89 %, and the hybrid-nanofluid has acceptable heat-transfer capability.

中文翻译:

通过合成提高热导率产生了一种由分散在水中的氧化铜和多壁碳纳米管组成的新型混合混合物:实验表征和人工神经网络建模

纳米流体是一种固液混合物。通过使用一种固体纳米粒子或一种流体,形成单纳米流体 (MN),通过使用两种固体纳米粒子 (NP) 或两种流体,形成混合纳米流体 (HN)。在本研究中,对于 MN、氧化铜 (CuO) 和 HN,两种固体,即 CuO 和多壁碳纳米管 (MWCNT) 分散在水基液中。纳米流体制备后,测量热导率,并对结果进行数值模拟。之后,进行 XRD-EDX 进行相结构分析。然后,对 FESEM 进行了 NPs-微观结构研究。在 0.2% 到 1.0% 的体积分数 (Vf) 下,在 25 °C 到 50 °C 的温度 (T) 范围内研究了 MN 和 HN 的热导率 (TC)。导热系数提高了 19.16 % 和 37。对于单纳米流体和混合纳米流体,在最大 Vf 和 T 处分别观察到 05%。新的相关性以 R 2 = 0.9 呈现,并且人工神经网络 (ANN) 已以 R 2 = 0.999 完成。对于呈现的相关性,0.86% 和 0.51% 的偏差,而对于训练模型,估计单纳米流体和混合纳米流体的偏差分别为 0.41% 和 0.51%。作为最终结果,通过将 MWCNT 添加到 CuO-H 2 O 混合物中,热导率提高了 17.89%,并且混合纳米流体具有可接受的传热能力。估计单纳米流体和混合纳米流体的偏差分别为 51%。作为最终结果,通过将 MWCNT 添加到 CuO-H 2 O 混合物中,热导率提高了 17.89%,并且混合纳米流体具有可接受的传热能力。估计单纳米流体和混合纳米流体的偏差分别为 51%。作为最终结果,通过将 MWCNT 添加到 CuO-H 2 O 混合物中,热导率提高了 17.89%,并且混合纳米流体具有可接受的传热能力。
更新日期:2020-06-25
down
wechat
bug