当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors
Materials Chemistry Frontiers ( IF 7 ) Pub Date : 2020-06-24 , DOI: 10.1039/d0qm00180e
Lijing Xie 1, 2, 3, 4, 5 , Fangyuan Su 1, 2, 3, 4, 5 , Longfei Xie 5, 6, 7, 8, 9 , Xiaoqian Guo 1, 2, 3, 4, 5 , Zhenbing Wang 1, 2, 3, 4, 5 , Qingqiang Kong 1, 2, 3, 4, 5 , Guohua Sun 1, 2, 3, 4, 5 , Aziz Ahmad 1, 2, 3, 4, 5 , Xiaoming Li 1, 2, 3, 4, 5 , Zonglin Yi 5, 10, 11, 12 , Chengmeng Chen 1, 2, 3, 4, 5
Affiliation  

Porous carbon materials are an attractive choice as electrode materials for supercapacitors due to their large specific surface area, high conductivity, stable chemical properties and low cost. In recent years, the electrochemical performance of porous carbon-based supercapacitors has gained considerable attention and has been greatly improved via the rational design of morphology/porous structure and surface properties. However, for these porous carbon electrodes, there remains a limited understanding of practical ion dynamics, charge storage mechanisms and their influence on the electrochemical performance. Therefore, an in-depth fundamental understanding of the charge storage mechanisms, transport pathways of electrons/ions and the electrochemically active sites is extremely important for further building efficient supercapacitors. Existing reviews in the literature mainly focus on the preparation and properties of porous carbon. Herein, we specifically summarize the state-of-the-art progress, from in situ characterization experiments and theoretical calculations to understand the ion/charge storage in porous carbon electrodes of supercapacitors, and further discuss the structure–activity relationships between doping species and electrochemical performances. Furthermore, the challenges and future development associated with supercapacitors in practical applications are included.

中文翻译:

孔结构和掺杂种类对多孔碳基超级电容器电荷存储机理的影响

多孔碳材料由于其大的比表面积,高电导率,稳定的化学性质和低成本而成为超级电容器的电极材料是一种有吸引力的选择。近年来,多孔碳基超级电容器的电化学性能受到了广泛的关注,并通过合理设计形态/多孔结构和表面特性。然而,对于这些多孔碳电极,对实际的离子动力学,电荷存储机理及其对电化学性能的影响的理解仍然有限。因此,对电荷存储机理,电子/离子的传输途径以及电化学活性位点的深入基础了解对于进一步构建高效的超级电容器极为重要。文献中的现有评论主要集中在多孔碳的制备和性质上。在此,我们从现场特别总结了最新进展进行表征实验和理论计算,以了解超级电容器的多孔碳电极中的离子/电荷存储,并进一步讨论掺杂种类与电化学性能之间的结构-活性关系。此外,还包括与超级电容器在实际应用中相关的挑战和未来发展。
更新日期:2020-08-27
down
wechat
bug