当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Validation of Injection Molding Simulations of 3D Microparts and Microstructured Components Using Virtual Design of Experiments and Multi-Scale Modeling.
Micromachines ( IF 3.4 ) Pub Date : 2020-06-24 , DOI: 10.3390/mi11060614
Dario Loaldi 1 , Francesco Regi 1 , Federico Baruffi 1 , Matteo Calaon 1 , Danilo Quagliotti 1 , Yang Zhang 1 , Guido Tosello 1
Affiliation  

The increasing demand for micro-injection molding process technology and the corresponding micro-molded products have materialized in the need for models and simulation capabilities for the establishment of a digital twin of the manufacturing process. The opportunities enabled by the correct process simulation include the possibility of forecasting the part quality and finding optimal process conditions for a given product. The present work displays further use of micro-injection molding process simulation for the prediction of feature dimensions and its optimization and microfeature replication behavior due to geometrical boundary effects. The current work focused on the micro-injection molding of three-dimensional microparts and of single components featuring microstructures. First, two virtual a studies were performed to predict the outer diameter of a micro-ring within an accuracy of 10 µm and the flash formation on a micro-component with mass a 0.1 mg. In the second part of the study, the influence of microstructure orientation on the filling time of a microcavity design section was investigated for a component featuring micro grooves with a 15 µm nominal height. Multiscale meshing was employed to model the replication of microfeatures in a range of 17–346 µm in a Fresnel lens product, allowing the prediction of the replication behavior of a microfeature at 91% accuracy. The simulations were performed using 3D modeling and generalized Navier–Stokes equations using a single multi-scale simulation approach. The current work shows the current potential and limitations in the use of micro-injection molding process simulations for the optimization of micro 3D-part and microstructured components.

中文翻译:

使用虚拟实验设计和多尺度建模对3D微型零件和微结构零件的注射成型仿真进行实验验证。

对于建立制造过程的数字孪生的模型和仿真能力的需求,对微注射成型工艺技术和相应的微成型产品的需求不断增长。正确的过程模拟所带来的机会包括预测零件质量和找到给定产品的最佳过程条件的可能性。本工作展示了微注射成型工艺模拟的进一步应用,以预测特征尺寸及其优化和微观特征复制行为(由于几何边界效应)。当前的工作集中在三维微观部件和具有微观结构的单个部件的微观注射成型上。第一,进行了两次虚拟实验,以预测精度在10 µm内的微环的外径以及在质量为0.1 mg的微组件上的飞边形成。在研究的第二部分中,针对具有15 µm标称高度的微槽的部件,研究了微结构取向对微腔设计截面填充时间的影响。在菲涅耳透镜产品中,采用多尺度网格化对微观特征在17–346 µm范围内的复制进行建模,从而可以以91%的精度预测微观特征的复制行为。使用3D建模和通用的Navier–Stokes方程,使用单个多尺度模拟方法进行了模拟。
更新日期:2020-06-24
down
wechat
bug