当前位置: X-MOL 学术Fatigue Fract. Eng. Mater. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Location dependence of breathing mechanism for a slant crack in a shaft
Fatigue & Fracture of Engineering Materials & Structures ( IF 3.7 ) Pub Date : 2020-06-23 , DOI: 10.1111/ffe.13258
Hossain Mohammad Mobarak 1 , Helen Wu 1 , Chunhui Yang 1
Affiliation  

Periodic stresses are always imposed on a rotor, and thus, a crack due to fatigue is unavoidable. Machinery must be properly diagnosed to avoid tragic accidents. Vibration detection is the most important tool for such a diagnosis system. It is important to know the vibration characteristics of a cracked rotor in order to develop a monitoring system which can detect a crack in an early stage of propagation. In this study, to explore the crack breathing mechanism, a three‐dimensional finite element model is simulated by using a commercial analysis solver—Abaqus/Standard. A two‐disc rotor system with a slant crack is used under the coupling effect of rotor weight and unbalance force. Unlike crack breathing under rotor weight‐only, a crack opens and closes differently under the effects of unbalance forces. Crack breathing depends on its location along the length of the shaft and individual parameters of the rotor system. A few crack locations are recognised along shaft length where the crack may stay fully closed or open during shaft rotation under certain loading circumstances. These locations also split the shaft into different areas based on the orientation of the unbalance force, crack size and location, where shaft stiffness may be higher or lower. Presented findings indicate that predicting the dynamic response of cracked rotors can be anticipated much accurately. Therefore, the impacts of unbalance forces and individual rotor physical characteristics on crack breathing must be taking into consideration.

中文翻译:

呼吸机构对轴中倾斜裂纹的位置依赖性

周期性的应力总是施加在转子上,因此,不可避免地会由于疲劳而产生裂纹。必须正确诊断机械,以免发生悲剧事故。振动检测是这种诊断系统最重要的工具。重要的是要了解破裂的转子的振动特性,以便开发一种可以在传播的早期阶段检测出裂缝的监测系统。在本研究中,为探究裂纹呼吸的机理,使用商业分析求解器Abaqus / Standard模拟了三维有限元模型。在转子重量和不平衡力的耦合作用下,使用了具有斜裂纹的两片式转子系统。与仅承受转子重量时的裂纹呼吸不同,裂纹在不平衡力的作用下以不同的方式打开和关闭。裂纹呼吸取决于其沿轴长度的位置以及转子系统的各个参数。沿轴长可以识别出一些裂纹位置,在某些载荷情况下,在轴旋转期间裂纹可能会保持完全闭合或打开。这些位置还会根据不平衡力的方向,裂缝的大小和位置将轴分为不同的区域,其中轴的刚度可能更高或更低。提出的发现表明,可以非常准确地预测裂纹转子的动态响应。因此,必须考虑不平衡力和单个转子的物理特性对裂纹呼吸的影响。沿轴长可以识别出一些裂纹位置,在某些载荷情况下,在轴旋转期间裂纹可能会保持完全闭合或打开。这些位置还会根据不平衡力的方向,裂纹大小和位置将轴分为不同的区域,其中轴的刚度可能更高或更低。提出的发现表明,可以非常准确地预测裂纹转子的动态响应。因此,必须考虑不平衡力和单个转子物理特性对裂纹呼吸的影响。沿轴长可以识别出一些裂纹位置,在某些载荷情况下,在轴旋转期间裂纹可能会保持完全闭合或打开。这些位置还会根据不平衡力的方向,裂纹大小和位置将轴分为不同的区域,在这些位置上,轴的刚度可能更高或更低。提出的发现表明,可以非常准确地预测裂纹转子的动态响应。因此,必须考虑不平衡力和单个转子的物理特性对裂纹呼吸的影响。轴刚度可能更高或更低。提出的发现表明,可以非常准确地预测破裂转子的动态响应。因此,必须考虑不平衡力和单个转子的物理特性对裂纹呼吸的影响。轴刚度可以更高或更低。提出的发现表明,可以非常准确地预测裂纹转子的动态响应。因此,必须考虑不平衡力和单个转子物理特性对裂纹呼吸的影响。
更新日期:2020-06-23
down
wechat
bug