当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial Fuel Cells: Nanomaterials Based on Anode and Their Application
Energy Technology ( IF 3.8 ) Pub Date : 2020-06-24 , DOI: 10.1002/ente.202000206
Yuanfeng Liu 1, 2 , Xiuling Zhang 1, 2 , Qichun Zhang 3 , Congju Li 1, 2
Affiliation  

Microbial fuel cells (MFCs) exhibit great potential to generate power through organic wastewater treatment. Limitations have restricted the advanced development of MFCs, including low power density, expensive electrode materials, and the challenge to manufacture MFCs in large scale. However, the introduction of advanced anode materials, especially porous and nanostructured materials, is believed to be an effective way to solve the problems, as they can promote bacteria extracellular electron transfer (EET) because of their unique physical, chemical, and electrical properties. Nanostructured materials, including carbon nanotubes (CNTs), graphene, activated carbon fiber, metal, metal oxides and conductive polymers, show many appreciable properties such as good conductivity, large specific surface area, and excellent catalytic activity. Additionally, nanomaterials with unique electrochemical properties provide strong charge interactions with organic compounds and the direct electrochemistry process between bacteria and the anode. This Review comprehensively focuses on the recent development of modification of nanostructured anode materials in view of crucial intrinsic factors to enhance electricity output. Furthermore, the enhanced performance of MFCs and the corresponding known mechanism is also discussed, which enables active bacteria to facilitate electron transfer. Finally, promising strategies to modify anode nanomaterials for future research are presented.

中文翻译:

微生物燃料电池:基于阳极的纳米材料及其应用

微生物燃料电池(MFCs)具有通过有机废水处理发电的巨大潜力。局限性限制了MFC的高级开发,包括低功率密度,昂贵的电极材料以及大规模生产MFC的挑战。但是,先进的阳极材料,特别是多孔和纳米结构材料的引入,被认为是解决问题的有效方法,因为它们具有独特的物理,化学和电学性质,可以促进细菌的细胞外电子转移(EET)。纳米结构材料,包括碳纳米管(CNT),石墨烯,活性碳纤维,金属,金属氧化物和导电聚合物,表现出许多明显的特性,例如良好的导电性,大的比表面积和出色的催化活性。另外,具有独特电化学性能的纳米材料可与有机化合物产生强电荷相互作用,并在细菌和阳极之间提供直接的电化学过程。考虑到提高电输出的关键内在因素,本综述全面关注了纳米结构阳极材料改性的最新进展。此外,还讨论了MFC的性能增强和相应的已知机理,这使活性细菌能够促进电子转移。最后,提出了用于阳极纳米材料改性的有前途的策略,以备将来研究之用。鉴于重要的内在因素,以提高电力输出,本综述全面关注纳米结构阳极材料改性的最新进展。此外,还讨论了MFC的性能增强和相应的已知机理,这使活性细菌能够促进电子转移。最后,提出了用于阳极纳米材料改性的有前途的策略,以备将来研究之用。考虑到提高电输出的关键内在因素,本综述全面关注了纳米结构阳极材料改性的最新进展。此外,还讨论了MFC的性能增强和相应的已知机理,这使活性细菌能够促进电子转移。最后,提出了用于阳极纳米材料改性的有前途的策略,以备将来研究之用。
更新日期:2020-06-24
down
wechat
bug